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ABSTRACT

The finite element method using a dlsplacement model is employed

to analyze the behavior of elastic-plastic shells of revolution under

axisymmetric loading. Both perfectly plastic and work hardening materials

are treated. The solution is oased on the use of a new curved element which

can take specified slopes and curvatures at its nodal circles°

Various methods of expressing the geometry of a curved element are

discussed, and the elements developed are well-conditioned for all ranges

of latitude angle. Representatxon of the displacement pattern in both

rectilinear local and curvilinear surface coordinates are compared. The

former is found to be superior in accommodating the rigid body translation

and the constant straining modes.

A general treatment of the elastic-plastic problem in connection

with the finite element method is given. The tangent stiffness method

and the initial strain method, which treats the plastic deformation as a

fictitious load, are compared. The former method was selected for _se in

the analysis. Several numerical examples are given to illustrate the

convergence and the accuracy of che method.
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NOMENCLATURE

The following ist contains the list of symbols used in this dissertation.

Some of the symbols which were introduced and were not refer_ed to after-

wards ,_ere defined in the text and are not listed here. Unless otherwise

stated, the repeated indices imply summation over the range of the indices.

In Chapter 3 quantities with subscripts are covariant components and

quantities with superscripts are contfavariant components. The symbol !J

denotes covariant derivative.

A - as defined in (4.43)
ijk_

Cijk_ - elastic-plastic moduli tensor

6 8_6 - elastic-plastic moduli for generalized plane stress, see (4.65)

C - edge of the shell

c - as defined in (4.29)

dA - surface element of the reference surface of shell

dC - element of edge length of the shell

dS - surface element

ds - element of arc length

dv - volume element

E - Young's mcJulus

E - tangent modulus
t

E ijkL - elastic moduli tensor

eij - deviatoric strsin tensor, see (4.3)
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- strain energy density

F free energy function, see (3.32); also yield function ir Chapter
4

f - yield function i

i
f - component of body force por unit volume

rAg - plastic potential

H±jk£ - el&stic complianc_ tensor

H - as defined in (4,21)

h - as defined in (4.42), also shell thickness in Chapter 5

JIJJ2,J3 - invariants of deviatoric stress tensor

k - yield stress in simple shear

- c_r(! length of an element

Ms,Me - meridional and circumferential bending moments per unit
length, respectively

Ns,Ne - meridional anu circumferential in pla,. forces per unit length,
respectively

n. - dlrection cosines of outward normal to the bouhdary _urface
J

ps,Pr - meridional and normal surface load per unit _rea of reference
surface of shell, Fig. i0

Qs - transversal shearing force, Fig. I0 _--

rl,r 2 - principal radii of curvature of shell

r - as shown in Fig. i0

S - part of boundary surface where stresses are specified
T

Sijk_ - elastic-plastic compliance tensor, see (4.36)

sij - deviatoric stress tensor, see (4.2)

s - arc length, also mean normal stress, see (4.2)
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SI,S 2 - as defined in [4.69) or (4.70)

i
t - component of stress vector

Ul,U 2 - displacements as shown in Fig. 12

u - meridiona I disDlacement

u. - displacement compo_lents
1

V - volume

W - plastic work, see (4.20)
P

_. - generalized coordinates1

_.. - see (4.28)
ij

8 - an angle as shown in Fig. 12

1 for i=j

6.. - Kronecker delta; 6 . =

ij ij 0 for i_j

4,6 - if precede any symbol designate s finite and an infinltesimal ,

increments, respectively

6_ - as defined in (4.30)

6_ - a positive parameter, see (4.13)

6.. - strain tensor
iJ

6s,6 e - meridional and circumferential strains, respectively

o o
£ ,6^ - meridional and circumferential strains of the reference surface
s

of shell, respectively

6P - equivalent plastic strain, see (4.22)

- as defined in (4.55) for Chapter 4; also coordinate along the '

thickness of shell in Chapter 5, see Fig. 13

_.j - initial strain tensor, see (3.26)

- local coordinate for an element, see Fig. 12
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@ - circumferential angle, see Fig. iO

K - parameter of work-hardening, see (4.16)

K K - meri_ional and circumferential change of curvatures of shells' e
respectively

k,_ - Lame constants

- Poisson ratio

- local coordinate for an element, see Fig. 12

- potential energy

_ - potential energy of an element

- yield stress in tension
Y

- equivalent stress

T IJ , T.. - stress tensor
iJ

- latitude angle, see Fig. i0

X - meridional rotation

- as shown in Fig. 12

- as defined in (4.74)

[ ] - vector; column matrix

[ ] - matrix

[A] - displacement transformation matrix, see (3.15)

[B] - as defined in (3.8)

[C] - matrix of elastic-plastic moduli

[D] - rigidity matrix, see (5.24)

[El - matrix of elastic moduli

[J} - as defined in (3.38)
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[K] - stiffness matrix of the entire system

[k] - element stiffness matrix

[k ] - element stiffness matrix in genera]ized coordinates, see (3.11)

ILl - as defined in (3.24)

[_] - as defined in (5.23)

[P] - as defined in (3.37) in Chapter 3, also as defined in (5.29)

in Chapter 5

(p} - as defined in (5.28)

[Q} - equivalent nodal point force

% [Q_] - equivalent nodal point force in generalized coordinates

[q} - nodal point displacement

t [R] - external nodal point load of the system

Jr} - nodal point displacement of the system

IT] - as defined in (_.54)

[_} - generalized coordinates

[e] - strain tensor expressed in column matrix

[e] - as defined in (5.22)

[_] - stress tensor expressed in column matrix

[_] - as defined in (3.7)

[_f],[_t ] - interpolating functions for body forces and surface loads,
respectively, see (3.13) and (3.14)

?
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i. INTRODUCTION

The stress analysis of shells of revolution and particularly those of

s[)herical, evlindrical_ toroidal, and conical shells has received a great

deal of attention. The _bundance of literature in tnis area is ,'ue mainly

to the great variety of applications: domes_ fluid containers, nuclear

reactors, rocket casings, submarine hulls, and pressure vessels

Early investigations have been limited to small delormations of shells

composed of linear, hnmngeneeus isotropic elastic materials. The classical

work of H. Reissner [i]* on spherical shells 9nd the extension _y E.

Meissner [2_ for shells of revolution of arbitrary shapes were the first

% significant contributions to the theory of rotational shells. Asymptotic

integration was found to be very fruitful in the solution of the governing

equations of spherical shells for a wide range of geometrical and material

parameters. This method has also been employed for other types of rotatienal _--

shells [3,4].

Analytical solutinns of the governing differential equations for shells

of revolution are available only for special cases [5,6,7]. However,

numerical solutions, with the aid of digital computers, have been achieved

for arbitrary meridional shapes using: i) the finite difference method [8,93,

2) numerical integration procedures [i0], and 3) numerical integration

combined with the finite difference method [ii]. These methods are applicable

if variation in the shell geometry and material properties can be expressed

analytically. In muny practical problems, however, the variation of geometry

*The numbers in brackets refer to the references listed at the end.
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and material properties are quite arbitrary and do not lend themselves to

simple analytical representations. The process of curve-fitting must then

be used to characterize these variations. This introduces inaccuracies

which will permeate through the remainder of the numerical analysis,

especially where the derivatives of the fitted ChFVe are used.

Additional difficulties may also arise Jn the numerical integration of

the shell equations. Since such methods were originally devised to handle

initial value problems, their application to shel] analysis, a boundary value

problem, requires trial and error procedures. If the values of the un-

specified variables at the initial boundary are not judiciously assigned,

unsatisfactory results may be produced. Truncation, cancellation, and round-

off errors may also accumulate over a large integration range and destroy

the desired accuracy in the results. The importance of the error due to

cancellations when the length of the shell is increased is pointed out in

[Ii]. It is found that for every set of geometric and material properties

of the she:l there is a critical length beyond which the solution loses

all accuracy.

A different numerical scheme_ which is known as the finite element

methods h_s also been employed for the analysis of arbitrary shells of

revolution. In this proeedure_ the continuous shell structure is divided

into a number of short frustums, to be referred to as the "shell elements",

which are connected at their edges called the "nodal circles". The

assemblage is made through equilibrium and compatibility requirements at

nodal circles. Because each frustum may be considered as a separate unit,

t
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different material properties_ as well a_ thicknesses can be ascribed to

different elements. The principal tas_ in tnls procedure consists of

establishing a force-displacement relationship between the nodal circle

forces/moments and the corresponding displacements/rotations. The influence

coefficients relating these two sel_ of quantities may be e_pressed in

matrix form, which is well suited for routine computations in a digital

computer, as a stiffness or a flexibility matrix of the element° In the

literature there are two methods for obtaining the iniluence coefficients

of a shell element.

% The first method utilizes the homogeneous solution of the governin_

differential equations. As a result, the element shape is restricted to

¢
certain slmple shell geomet:-ies such as a truncated cone, a circular

cylinder, and a spherical cap. The truncated cone element is the more

general shape for approximating an arbitrary shell geometry Tllis element

has been employed by Meyer and Harmon [121 for eOge loading and by Popov,

Penzien, and Lu [13] for any general axisymmetric loading. Ref. [13] has

also used cylindrical elements and a spherlcal cap _o supplement the

conical element. The use of a piece of circular toroid has also been

reported [14j. In addition to the restriction of the element shape, the

influence coefficients obtained by this method turn out t be very com-

plicated and require the evaluation of infinite series, which for some

geometrical and msterial parameters converge very slowly. For a conical

shell element, these series are Bessel functions of complex argument, known

1967021775-016



as Thompson functions. At the transitions of co_ical elements _nto

eylindrlcal and circular plate elements_ the Thompson Functions become

ill-conditloncd and require special treatm#nt. _[]Is phenomenon i_ due tc

the change of the fo_'m of the solution of the differential equations from

Bessel to exponential and logarlthmlc Junctions.

The second approach makes use of e special type of direct method of

variational problems, referred to as the extended Ritz method° This

approach is based on the original work of Turner et al LI5] and A1gyris et al

[16], which was further developed and extended by Melosh [17]_ de Venbeke

[i8,19] and others. In this approach, the primary variables are approximated _

by some relatively complete sets of functions in a subregion_ here called

the element, to extremize the variational problem. Depending on which set

of variables, displacements or stresses is taken _ the primary _ariable two

types of models known as the "displacement models" and the "equilibrium

models" have been advanced. In displacement models the displacements are

taken as the primary variables, expressed in terms of linear combinations

of the interpolating functions. These displacements are then used to

minimize the potential energy of the system. This procedure provides

upper bounds for the stiffness influence coefficients. In the equilibrium

models, on the other hand, the stresses are taken _s the primary variables

and their approximate forms, .which satisfy the equilibrium equations, are

used to minimize the complementary potential energy of the system. The

stiffness influence coefficients thus obtained constitute a lower bound to

the exact solution. By taking a finer mesh, provided certain conditions are
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satisfied [19], the bounds can be made closer. However_ this is insdfiiclent

to guarantee convergence for the true solution. Firally, tne use ol a "mlxed

model" has also been advocated _20jo

In the analysls of ,_heils only the "dlsplacement mudels" nave been

studied thus far. Until very recently the truncated cone has been the only

element which was reported in the literature to ideallze shells ol revolution.

In contrast with the finite element of the first type, discussed above, the

use of an approximate and, in fact, simple displacement field removes the

ill-conditioning and enables a truncated cone to be degenerated directly into

the limiting case of a circular cylinder or of an annular plate. In

addition, the relative simplicity of the influence coefficients obtained from Lv

the second approach decreases the number of numerical operations and

consequently reduces the numerical errors. It also enables the use of a

la_er number of elements for the same computer core storage. Based on

many numerical examples, the accuracy of the second method was found to be

comparable, if not superior, to the first approach.

The use of a conical element for a displacement model, together with

the direct stiffness method of matrix analysis of structure, is reported by

Grafton and Strome [21] for axisymmetric deformation of shells of revolution

of cylindrically orthotropic materials. In the derivation Grafton and Strome

approximated the integral of the strain energy of the shell in a manner which

later was shown to reduce accuracy. The solution for asymmetric deformations,

utilizing Fourier expansion, was achieved by Percy et al [22]. These authors

also studied the effect of including higher order polynomials in the dis-

1967021775-018



placement field, which is reported to improve the results ior edge loading_

Extension of [22] has been made by Klein and Sylvester [23 i for the dynamic

analysis of shells ¢_ revolution. The con±cal element was also employed
l

fo, analysis of lamJr_ted shells of revolution by Dong [24j.

The idealizatlon of the shcll geometry by a series ol t, uncated cones

introduces the discontinuity of slopes along the meridian of the shell.

This may introduce an u realistic stress concentration at the element

junctures. This effect Ls very pronounced in membrane type shells. The

study of Jones and Strom [25] on the membrane type spherical cap clearly

x indicates the undesirabl _phenomena of oscillating displacement and
\

development of large_ bonding_ moments at the nods]_ circles. The peak

values of the_e bending moments, which do not exist in the true solution,

appear at the element junctures where the slgpes are made discontinuous.

The manner in which one can improve the analysis is to develop a curved

element to provide a better geometric idealization of the system. Jones

and Strome [26] report the first attempt to construct such a curved element

for rotational shells. Their element provides the continuity of slopes

at nodal circles but for an arbitrary shell the meridional curvatures are

not continuous at these nodes. Moreover_ due to an inadequate geometrical

representation, their element is only applicable to open shells and to cases

where the latitude angle, ¢, is not equal or close to zero.

Although the elastic analysis has been shown to predict satisfactorily

the load-deformation behavior of the structures for loading below the

proportional _imlt; it ceases to be useful once the stresses exceed the

1967021775-019
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elastic limit. In certain design problems, such as space vehicle structures,
4

asn, all amount of plastic deformation may be tolerated in order to utilize

the material more efficiently, in fact_ a small amount of plastic de-

formation may have the bet _ficial effect of alleviatlng the stress con-

centration _t the jl,nctures and in the zones where the gradicnt of loading

is high. Moreover, the analysis of pl_stic deformation for cyclic loading

is essential in predicting low cycle fatigue failure [38,39j. The fact that

the problem of determining the displacements and stress distributions in

these types of problems is highly non-linear in the past made it _imost

impossible to obtain solutions to any but the simplest problems. The

availability of the digital computer and the techniqdes of finite element

now makes these problems tractable.

Originally, the finite element method was devised to treat the lineal

system by means of matrix algebra. With the aid of incremental or

iterative techniques the utility of the finite element can be extended to

handle non-linear problems [27, 28,29]. In this dissertation attention is

confined to physical or material nonlinearity, in particular non-linearity

as the result of plastic deformation. This area of research is now in its

development stage and much future work is to be expected. In general, two

approaches can be adapted to extend the fxnite element method to treat

the elastic-plastic problems. One approach makes use of en analogy between

the plastic strain and the thermal, creep, or shrinkage strain [30,31,32].

This approach will be termed the "initial strain method". The stiffness

influence coefficients used in this approach are identical with the elastic

!
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case, and the effect of plastic deformatlon appears as 2 modification to the

loading. The other approach utilizes the relations between stress and strain

increments to establish the tangent influence _oefiicients for each load

increment [33,34]. Here the influence coefficients are changed during

! incremental loading to account for physical ;_onlinearlty and path-depenoency

of plastic deformation. Because different stiffness influence coefficients

are used Jn the formulation of the problem, depending o_ the _tress level

achieved, thls method will be i'eferred to as tile "tangent stiffness method"

Some experience with the initial strain method has shown a slow convergence

oI tile results [35]. It can be surmized that for materials exhiblting a

i small amount of work-hardening, the initial strain method should giveinferior results. In addition_ since in the initial strain method the

{
plastic strain appears as a correction to the elastic part of strain, the

process may become ill-conditioned for cases where the plastic strain is

predominant. The initial strain method has the advantage of requiring the

stiffness matrix to be inverted only once. On l:he other hand, the stiffness I_.

influence coefficients must be changed for each loading increment if the
%

material properties change due to variation of temperature or other'

environmental conditions, or in the case3 where geometrical nonlinearity

is to be included. In this case, the initial strain method loses i_s only
i

advantage.

A brief review of the previous work on plastic behavior of shells is

, given in Chapter 2. To treat plastic deformations, a detailed study of the¢

initial strain and the tangent stiffness methods in connection with the

I
t'

_t
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finite element technique will be made in Cl_apter 3.

This disseltatiop is concerned with the elastic-plastic deformation

of shells of revolution under axisymmetric loading. An rxtensive study wa-

made to develop a refined element for t,_,. in the finite elem£ method of

analysis. Several curved elements were !eveloped and their accu, acies were

compared thrnugh numerical ex_,mples. The elements developed do not have

the shortcomings of the one given in Ref. [26]. The best element developed

here which satisfies the continuity of slopes and curvatures at nodal circles

was used in connection with the "tangent stiffness nlethod" to analyze the

plastic deformation of shells of revolution. It m_,, be pointed out that

no applications of the finite element method to the analysis of plastic
M

deformation of shells appear to be available in the literature.

A computer program in FORTRAN IV language was written for IBM 7090-7094

DCS system, available at the Computer Center of the University of California

at Berkeley, Several illustrative examples were worked out and the accuracy

of the method was studied.
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2. REVIEW OF THE PLASTIC SIIELL THEORIES

The plasticity of shells is a relatlvely new area ol investigation°

Research in this field has been started in the late 1940's. The theory was

initially developed as an ektension of the elastic shell theory b 3 repl3cing

the Hooke's law with Hencky's relations of the deformatio,_ theory of

plasticity []12 i, This development was accompanied by the generalization of

the limit analysis theorems for rigid frames [40,41], for the treatment of

shell probIems [42,43]. Further developments were essentially along these

two lines and various special cases were studied. Except for the very simp]e

cases, the complexity of finding analytical solutions for shells using the

flow theory of plasticity has retarded the progress in this field. The

advent of the digital computers and the development of new methods of

structural analysis greatly changed this situation. These aids are now

indispensible for the numerical solution of practical problems.

In this chapter the work reported in the literature on the plastic..y

of rotational shells under axisymmetric loadin G will be reviewed. As the

development of solutions for general loading conditions is still frag-

mentary, this topic will not be discussed here.

Much of the research has been devoted to the limit analysis approach.

In _h¢ sequel the work related to limit analysis, rigid-work hardening

materials, and elastic-plastic analysis using both deformation and flow

theories of plasticity will be briefly reviewed. In addition, the results

of some experiments will be discussed. For further details the reader may

wish to examine the appropriate references listed at the end.

i
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2.1 Limit Analysis of Shells

In the limit analysis approach_ the objective is to find the load

carrying capacity of the structure in question based on the assumptions that

the material is perfectly plastic (i.e., non-work-hardening) and the de-

formation prior to collapse is so small as to allo'w the use of small de-

flection theory. Jn some cases, the effect of the change in geometry and

work-hardening c,uld mPke the calculation of the ultimate load meaningless°

The complete _ Jlution involves the determination of the stress and the

velocity fields at the point of collapse.

%

ExceDt for a few cases such as the hyperbolic par_boloid and the

helicoidal shells [95], all of the literature on the limit analysis of shells

have been devoted to the case of rotational shells under axisymmetric loading.

The steps in the limit analysis of shells are as follows: (I) express

the yield condition in terms of the stress resultants (including the stress

couples), (2) apply the lower and upper bound theorems to establish the

bounds on the ultimate load, and (3) determine the stress and velocity fields,

i± a unique collapse load has bee** attained in (2).

As a general rule, the first step has been achieved by msking a

kinematic assumption, namely the Kirchhoff-Love hypotheses. The yield

hypersurface in the stress resultant space (the 6-space) was first

constructed for Mises yield condition by Ilyushin in 1948 [112]. The same

surface was later reconstructed and specialized for rotational shells by

Rozhdestvyensky [50] and Hodge [65,70]. Onst and Prager 1954 [451 con-

structed the yield hypersurface in the stress resultant space for Tresca

yield condition.

mL
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Even for Tresca yield condition the hypersurface in the stress

resultant space is nonlinear and leads to a formidable mathematical problem.

Two approaches have been used to linearize this hypersurface. One

replaces a uniform shell with a sandwich shell baying two thin face sheets

carrying only the in plane stresses and a central core transmitting the

sheering forces [46,51,65,68,70]. The other replaces the hypersurface by a

series of intersecting planes inscribed and circumsc_ih_ on it [85].

Other methods to simplify the hypersurface also have been suggested.

The method used by Drucker and Shield [62] ignores the circumferential

bending moment in comparison with the meridional moment_ and the one proposed

by Hodge [70] neglects the interaction between the membranc forces and the

bending moments.

Among the various shapes of shells of revolution the cases of

cylindrical, spherical, and conical shells have received much attention.

The remainder of this section is devoted to the discussion of these problems.

Drucker [43] is believed to be the first to consider the limit analysis

of the cylindrical shells under internal pressure. Expressions for the

yield hypersurface for a cylindrical shell of a material obeying Tresca

yield condition were derived independently by Hodge [46] and Onat [48].

The effect of free ends on the load carrying capacity of cylindrical shells

has been discussed by Eason and Shield [49]. The case of a circular cylinder

: under ring load was studied by Eas_,n [63] and Prager [66]. The shells under

combined loading: - pressure, axial load, and/or torque - have been treated

by Sankaranarsysnan [72], Panarelli et el [79], Ball et el [84], and Ho

!
et al [99]. The last reference derives the complete stress and velocity
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fields at the limit load for certain types of loads, end conditions_ and

shell proportions. The problem of orthotropic cylindrical shells has been

reported by Niepostyn [53] and Mroz [693 where the modified linear yield

condition was used. The cases for anisotropic material has been discussed

in a series of papers by Mikelsdze [51,871 . The use of Mises yield condition

for cylindrical sandwich shell is 31so reported by Rzhanitzyn [60].

131e problem of spherical shells was first treated by Onst and

Prager [45]. The material was assumed to obey Tresea yield condition and

crude bounds on the ultimate uniform pressure were obtained. Closer bounds

were later reported for sandwich shells [61,64,70]. Mroz and Xu [82]

discussed the load carrying capacity of spherical shells by using a variety

of yield conditions and established a complete solution for certain simply

supported shells. Shallow spherlcal shells were treated by Hszalia [52] and

Feinberg [55]. Hodge et al [757 discussed the problem of a spherical cap

with s cut out. The ease of a shell loaded through a rigid boss was

investigated by Leckie [I00]. Finally, the complete solution of a clamped

spherical sandwich shell subjected to hydrostatic pressure is reported by

Lee and Onat [104].

The limit load for a uniform shallow conical shell was derived by

Onat [73] and Lance and Onat [80]. _ne load was applied through a finite

rlgld boss, connected rigidly to the shell proper, and the material was

assumed to obey Tresca yield condition and its associated flow rule.

Simultaneous with [73], the same p:oblem, but with the rigid boss • "nnected
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through a hinge to the sDell body, was considered by Eodge [71]. It was

k_
shown that if the radius of the boss tends to zero the solution will be

reduced to the case of a conical shell subjected to a concentrated load at

its apex. The value of the ultimate load is found to be independent of

2
the support condition and is equal to P = 2_ M co_ _, where _ denoteso

the latitude angle. Such a reduction was not possible in [73]. The work

in [73,80] was extended to sandwich shells by Hodge [95]. It was reported

that for a given shell, the collapse load increases with the increase of

boss size. The case of a closed conical shell under internal pressure is

presented by Resenblum [47] and Hodge et al [82] and an exact solution based

on the two moment interaction (see Ref. [70]) is reported by Kuech and
j,

Lee [i03].

In addition to the above types of shells, some other cases have also

been repovted in the literature. The case of torispherical shell was dis-

cussed by Drucker and Shield [62]. For intersecting shell structures, the

work of Hodge [88] for a closed cylindrical shell and Gill [89], Lind [90],

Cloud [91,96], Dinno and Gill [93,94], and Ellvin and Sherbourne [97,98]

concerning cylindrical nozzles in spherical shells may be mentioned.

Moreover, the general theory of sxisymmetric shallow shells has been treated

by Feinberg [55] and Hodge et sl [81].

For more information the books by Hodge [61,85] and Olszsk et al [86]

are recommended.

m
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2.2 Shells of Rigid-Work Hardening Materials

In the elastic-plastic analyses some simplifications may be introduced

by neglecting the elastic part of the strain. This is generally referred to

as the rigid-plastic approach. For work-hardening materials, the rigid-work

hardening approach together with the concept of piecewise linear yield

conditions have been employed. The utilization of the piece-wise linear

yield conditions and the associated flow rules for the solution of work-

hardening problems were suggested by Prager [107] and Hodge [108]. It allows

the total stress-strain relations to be used in the small and at the same

time retaining the characteristic features of incremental laws in the large_

As indicated by Hodge [109], the plastic flow rules can be explicitly

integrated under restrictive conditions, defined as a "regular progression".

That is s stress point, which has reached the yield surface, should not

move from one side of the surface to another, nor from one corner to a side,

or back into the elastic zone. These conditions impose a serious restriction

which may not hold in general.

The application of rigid-work hardening approach to the shell problems

is reported by Onat [Ii0] and Thorn et al [Iii]. Utilizing Tresca yield

condition and kinematic hardening, Onat discusses the rotational shells and

the special case of a circular cylinder. Thorn [92] and Thorn and Lee [III]

report cases of simply supported cylindrical shells under the internal

pressure. Tresca yield condition in terms of the stress resultants is

approximated by means of s square yield curve. Linear isotropic hardening

is assumed. In this analysis solutions are obtained for several plastic

m
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regimes and are applied to shells of various relative lengths.

2.3 El_stic-Plastic Analysds of Shells Using the Deformation Theory

Attempts to for;?ulate the elastic-plastic shell analysis problems

was initiated by using the deformat±on theory of plasticity. Ilyushin [112]

established the basic equations for the analysis of elastic-plastic shells

based on Hencky's relation. Ilyushin's _vork was continued by other in-

vestigators _n the Soviet Union [113 to 12C] for different cases such as

shallow shells [118] and for shells of 8nisotropic material [120]. Various

approximations were introduced in order to make the task of reaching an

analytical solution feasible. Iteration techniques together with the "initial

strain method", referred to in the Soviet literature as "the method of elastic

solutlon , also have been suggested [30].

Employing this technique, Mendelson and Mznson [121] formulated the

problem in a nonlinear integral equation form. Sevel'al examples, among them

the analyses of cylindrical shells with axial temperature gradient, were

worked out by using the method of successive approximations. This method

was later applied to genersl shells of revolution by Stern [122] and

Roberts [125]. Utilizing s finite difference method, Spers [124] extended

the approach for shells of revolution containing discontinuities.

2.4 Elastic-Plastic Analysis of Shells Usin_ the Flow Theory

The cor_cept of piecewise linear yield condition [i07,108,109] together

wlth ideslizstlon ef the shell sss ssndwlch structure hsvr been utilized

in the solution of elsstlc-pisstic shells using the flow theory of plasticity.
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This enables one to integrate the flow law locally. Several special caEes

have been studied. Hodge and Romano [126], Lee and Thorn [135], end Thorn

et al [138] discussed the problem of circular cylinder under uniform radial

pressure, linear Jsotropic hardening and simplified piecewise linear yield

function in terms of stress resultants were adopted in these investigations.

Comparisons with the limiting cases such as for perfectly plastic and to

rigid-work hardening cases are reported. The same problem was als_ dis-

cussed by Hodge [127] and Sheller et el [131] for sandwich shells with

clamped edges using Tresca yield condition; and by Hodge and Nardo [128]

%
and Paul and Hodge [129] by including the beam-column effect. In the letter

case the stress field is first detez ned for the rigid-plastic shell. Then,

J assuming that the state of stress is represented by the same part of the

; yield surface, the elastic-plastic problem is dealt with. Onat and

Yamanturk [130] included the effect of temperature both on strain and yield

strength. This approach has also been extended to conical shells by

! Stephens [137] and Stephens and Friedericy [140] where the beam-column

effect is also included.
%

Attempts to establish a general procedures to deal wlth the elastic-

2

, plastic shells using the flow theory also has been made by using the techniques

of numerical anal)sls. The finite difference method was used by Wltmer et al

: [132], Stern [134], and Strlcklin et al [136]. Reference []32] deals with

" a dynamic loading and treats the problem of tmpact-ioaded hemispherical

: shells. The method is limited to the shells of perfectly plastic material.

1

I
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Reference [136] deals with static problems and adopts Tresca yield

condition together with a special linear hardening rule (three slip planes).

These authors included the effect of large deflection. The method of

numerical integration was utilized for the analysls of rotational shells by

Marcal and Turner [133] and Marcal and Pilgrim_ [139]. Reference [133]

uses the Runge step-by-step integration for the solution of a corrugated

bellows consisting of toroidal elements. Reference [139] employs a

step-by-step predictor-corrector method to solve the problem of a bellows

under axial load and a torispherical pressure vessel head. It is reported

that the computer program developed in [139] is capable of solving shells

made up of segments of a flat plate, a cone, a cylinder, a sphere, end a

torus. For other shell geometry either the shell should be replaced with

the above segments or the program is to be modified. Moreover, the program

is limited to the case of shells under distributed loading.

\

2.5 Experiments

i In comparison with the amount of literature on theoretical _spect of

shell plasticity, only a few experimental results have been published.Experimental work reported in the literature may be classified into two

groups. One is concerned about the investigation of special design problems

such as reliability of welded or riveted connections, effect of openings,

and fatigue fslluze. Much of these experiments have been performed in

connection with pressure vessels. The other is related to the verification

of theoretical results. The latter will be reviewed here. Because the general

m
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theoretical solutions were lacking, the experiments were mostly confined

to the verification of ultimate load of the shells. Some contradictory

results have been reported. The effects of the change in geometry and a

work hardening may have a profound influence on the leao cmrvying capacity.

It has been pointed out that "secondary" membrane effect, which comes into

action after deformation takes place, is not as severe in shell problem as it

is in the degenerate case of plate bending. This is based on the fact that

membrane stresses, which are generally the primary stresses in shells, are

included in the formulation for the undeformed geometry. However, the effect

of the change in geometry can not be ignored in general.

To verify the results obtained in [71] and [73], Gerstle et al [141]

tested several circular conical shells. The specimens were loaded through

a rigid boss and connections similar to those described in Refs. [71] and

[73] were provided. Besides the study of the limit load, the effects of the

L

change in geometry were also studied. Demir and Drucker [142] tested eight

steel and seven aluminum cylindrical shells under ring loading. The above

authors report s reasonable correlation between the theoretical prediction

of the limit load and the experimental results. Augusti and d'Agostino [143],

on the other hand, report the results of the tests on nine short cylindrical

shells with fixed ends made of mild steel subjected to internal pressure,

where appreciable radial deflections have been observed at s pressure far

below the calculated limit pressure given by lIodge [46]. Their report cast

some doubt on the validity of limit analysis for the radius to thickness

ratios in the range of their tests. The error indicated by their comparison
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with the theory has been qualitatively discussed by Drucker [144].

Experiments on spherical shells were performed by Wast_ [145] and

Kaufman et al [146]. The specimen in Ref. Ll_6] consisted of a hemispherical

dome made of 6061 aluminum hsving a reinforced opening. Satisfactory agree-

ment between the experiments and the theoretical resu]ts based on Ref. [124]

is reported.

Tests on corrugated bellows consisting of toroidal element are reported

by Msrcml et al [147]. The results were compared with predictions of Ref.

[133]. The experimental and calculated results are reported to be in

reasonable agreement.

Stoddart and Owen [148] performed an experiment on a torispherical

pressure vessel head. The limit load obse'cved confirms the prediction made

: by Drucker and Shield [62].

Finally, the results uf tests on intersecting shells, consisting of

cylindrical nozzles in spherical pressures vessels, are g_ven by Cloud [963,

Dinno et al [149], and Ellyin et al [150]. They all report reasonable

agreements between experimental evidence and the predictions made in

references [96], [89], and [98].
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3. GENERAL TECHNIQUES FOR THE APPLICATION OF THE

FINITE ELEMENT METHOD TO ELASTIC-PLASTiC PROBLEMS

The direct stlffness method of the displacement models is found to be

the most powerful and in fact the most widely used procedure in the finite

element approach. Its general theory has been extensively discussed elsewhere. •

see for example the paper by Clough [36]. Only a brief summary of its

concepts and procedures will be given here. The quantities will be expressed

in terms of their covariant and contravariant components to allow general-

ization of results for any curv_linear coordinates, in what follows, the

attention is confined to deformations of a body which cauEo small stra_n and

small rotation.

3.1 General Concept

The theorem of minimum potential energy :s well known in the theory

of elasticity. It may be stated thus

"Of all displacements satisfying the given boundary conditions

those which satisfy the equilibrium equations make the potential

energy an absolute minimum."

The potuntlal energy, which Is a functional, is defined as

V V s
Y

whe re

- strain energy density

V - volume

*See e.g., I.S. Sokolntkoff, '_athemsttcal The,ory of Elasticity," McGraw-Hill,

1956, pp. 382-386.
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S - part of boundary where stresses are specified

u. dicplacement components
1

fi _ components of body force per unit volume

*i
t - components of stress vector specified on the boundary

In linear elasticity the strain energy density is expressed as

1 Tioi ¢ (3 2)n . °
2 zj

Note that the displacement, ui, must belong to a class of admissible

functions, that it must satisfy the displacement boundary conditions and

must have as m_ny continuous derivatives as required in the solution of a

problem.

Following the method of calculus of variations_ it can be easily shown

that the Euler's equation of the above variational problem yields the

equilibriull equations

"" fi[j + = 0 (3.3)

and its natural boundary conditions constitute the stress boundary conditions

ij n. : _i (3.4)
J

These results verify the theorem. That n is indeed s minimum can be

demonstrated from the positive definiteness of the strain energy density.

One of the advantages of stating the problem in the variational form

consists in being able to solve the problem with the aid of s direct method,

without recourse to the differential equations. Among the direct methods

i

of the _alculus of variation the Raleigh-Ritz method has been widely used.
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In the functional space terminology, the ides of the Ritz method is to

extremize the functional on a finite dimensional subspace of admissible

functions. For the approximate solution to converge to the true solution,

the subspsce should contain a set of functions which are relatively complete

in the space. In the ordinary Ritz method _his set of functions extends

over the entire space of the body. For an arbitrary geometry of a body,

selection of these functions so as to satisfy the geometric boundary conditions

is very difficult. In the finite element technique, however, these furcttons

are selected over a subregion of the body and vanish over the remaining part.

They are sometimes referred to as the "almost disjoint support functions."

The linear combination of these functions should satisfy certain requirements,

here compatibility conditions, st the boundary of a subregion.

The potential energy of the body is expressed as the summation of the

potential energies of the subregions.

N

= Z _A (3.5) ._=I

where N is the nut_ber of subregions each one of which is called an "element".

The fact that the shape and the dimension of the element may be chosen

arbitrarily can be used to advantage in approximating the shape of a body of

any geometry. The convergence can be studied by increasing the dimension

of the subspace of the admissible functions and also by increasing the

number of elements.
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The potential energy of an element may be expressed in matrix form as

i [_}T T T.a--_ [_]dv- b] [_]dv- [_]}[t[}dv (3.0)
v A v A sA

whe re,

T

{u_- {uI,u2, % }
T

22 T33 23 31 12{,} _ [,ii, T , , T , T , T }

T

[¢_} - [¢11' ¢22' ¢33' 2¢23' 2¢31' 2¢12}

T

, if}_ ill, f2, f37.

[t}- {tI, t 2, t3}

and the superscript T stands for the matrix transpose and A designates the

subregion.

The elements are connected with egch other at a selected number of

points, called nodes. Depending on the type of element, each one contains

certain number of nodal points. The product of the number of components

of displacements at each node t-mes the number of nodal points of the

element is called the number of degrees of freedom of the element. The

displacement components defined at a nodal point may not always have a

physical interpretation.

Following the ide_ of the finite element method, the displacements in

a subregion (element) are expressed in terms of the generalized coordinates
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{u(xi) } = [¢(xi)j {_} (3.7) ,
3xl 3xn

where n should be equal or greater than the number of degrees of freedom

of the element. If n is equal to the number of degrees of freedom, it is

preferrable to express {u} in terms of interpolating functions. Making use

of (3.7) t .?str_,ins can be expressed in terms of _'s as

{¢(xi)}= [B(xi)]{_} (3.81

Stresses are related to strain.,; through the constitutive relations

, [T(xi)} = [E] [¢(x i} (3.9)

where [E] is the matrix of Lhe elastic moduli. The material may be

anisotropic and the body may be inhomogeneous. In the latter case the

i
matrix [E] will be a function of space coordingtes x

Substituting (3.7), (3.8) and (3.9) into (3.6), one obtains

_A = ,[_}T [k ] [=}- {=}T {Q_} (3.10)

where

[k ] = / [B(x i)]T [E] [B(x i) 3 dv (3.11)

VA

r • T _ .]W[%}= j [+(xb] [f} dv+ [+(xb [t} ds (3.,+2>
VA sA
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Note that the vectors [f} and {t} may also be expressed in terms of

the interpolating functions, namely

{.f(xi) } = [¢f(xi)] {F} (3.1,3)

{t(xi) } = [¢t(x i)] {T} (3.14)

where {F} and [T} are the values of the body forces and the stress vectors,

respectively, at selected points, say the nodal points.

Assuming n to be equal to the number of degrees of freedom of th_

element .and making use of (3.7), we can express _'s in terms of the dis-
%

placements of the nodal points qi

[q} = [A] {a} (3.15)
nxl nxn nxl

or

{:} = [A] -I {q} (3.16)

Substitute (3.16) into (3.10) and define

T

[k] : [A-1] [k_] [A-I] (3.17)

{Q} : [A-1IT {%} (3. IS)

to get

T

11"A= {q} [k] {q}- [q} {Q} (3.19)

Now, minimize the potential energy, WA, with respect to q's

---- = 0 i = i, 2, ..... n (3.20)
hl
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This yields the following force-displacement relations

[k3{q]= {Q] (3.21)
nxn nxl nxl

The displacements q. and forces Q: are then transformed to a global
1 1

coordinates system. The assemblage of elements may be easily achieved

through the direct stiffness method, and the force-displacement relations of

the entire structure can be established.

[K] [r] = [R] (3.22)

Having imposed the displacement boundary conditions, the equations

(3.22) can be solved for [r_. Then, the stress field may be determined from

$

[_}= [E][¢}= ILl[q} (3.23)

where

[L] = [E] [B] [A-1] (3.24)

and the solution is complete.

3,2 The Use of Finite Elements in the Analysis of Elastlc-Plastic Problems

In the mathematical theory of plasticity two types of theories have

been advanced. The one which is called deformation (total) theory is based

on the premise that the final state of strain is uniquely determined by

the final state of stress. In the other, which is referred to as flow

(incremental) theory, it is stated that the plastic strain increments a_e

related to the final state of sZress, plastic strain, end the stress increment.

In general, these relations are not integrable and the integral denpnds on

the loading path. For this reason the term "nonholonomic" theory als# has

1967021775-040



28

been suggested to designate this theory.
t

The inadequacy of the deformation theory to treat an arbitrary plastic

deformation has been the topic of discussion during the early 1950's. It is

now a fairly well established fact that the deformation theory is incapable

of tracing the totality of the load-deformation history, especially during

the reversal of loading.

From the analytical view point the deformation theory is more tractable

than the flow theory and ±_s apF" :atlon to solve practical problems has not

yet been totally abandoned. However, using ,h_ incremental techniques of

the numerical analysis there appears to be nc significant simplification in

using th@ deformation theory. Both the flow and the deformation theories can

be treated in a similar manner. However, the iteration techniques are more

convenient for the solution of the problems formulated according to the

deforma;ion theory.

In the remainder of this chapter, the finite element method will be

adapted for the analysis of elastic-plastic problems. The discussion on the

constitutive laws of plasticity will be left for Chapter 4.

3.2.1 Initial Strain Method

For small strs_nc it is customary to express the strain tensor as the

sum of elastic, tbermR]., plastic, and shrlnkag, strains as

E cT P S
¢lj = ¢iJ + lj + ¢lj + ¢ij (3.25)

where the superscripts E, T, P, and S refer, respectively, to the elastic,

thermal, plastic, and shrinkage or swelling parts of the strain. Strains due

to other causes such ms creep may also be _ncluded.
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The elastic strain is recoverable upon the removai of the loading.

If the environmcntal conditions remain unchanged and the body is free to

deform, the removal of loading does not Pffect the other parts of the strain

tensor. Therefore, it may be helpful to express these parts in the following

manner

T P S

= ¢ij r326)j ¢ij + + eij " "

The quantity j will be referred to as "the initial ._traln . Expression

(3.25) may now be written as

E

= ¢.. + I]i (3.27)¢ij" Ij j

If the deformation theory of plasticity is adopted the plastic _train

may be expressed _s

P P k_)¢.. = ¢.. ( (3.28)
ij ij

Whereas, adopting the flow theory of plasticity

P _ 6 p¢ij : ¢ij (3.29)

path

where

P P _k,_, P 5,rk,_) (3.30)
5¢ij = 5¢ij ( eke'

The expression (3.29) is only integrable if the integration path is

knowr. The symbol "6" la used to indicate that the plastic strain increment,

P

5¢ij , is not in general a total differential. In addition, the symbol 5

desli:nates an infinitesimal increment. For numerical purposes 5¢_j is replaced

I
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by a finite increment snd tne expression (3.29) m-y be rewritten as

k
P P

¢ij(k) = m=_l Am ¢""ij (3.31)

where m denotes the number of increments.

.
In the theory of uncoupled thermoelasticity it is known that the

theorem of the minimum potential energy, zn the form stated in Equation (3.1),

is readily applicable if the strain energy density, E, is replaced by the free

energy function (Helmholtz's function), F, defined as follows

1 "" T

• F = _ IJ (¢ij - ¢ij) (3.32)

Expression (3.32) may be generalized by replacing the thermal strain

T

¢ij by the initial strain _.j; thus

1

g = 2 TiJ (¢ij - _j) (3.33)

where _ denotes the generalization of the strain energy density.

The stress tensor can be expressed in terms of the elastic strain

tensor

qij Eijk.g E : Eijkl
= CkL (¢kl - _1 ) (3.34)

Upon substitution of (3.34) into (3.33) end expressing the results in

matrix form _',e get

1

i {¢}T [E] {¢}- {¢}T [E] {I_} + g {'I_} T [E] {I_} (3.35)

*See, for example, B.A. Boley and J.It. Wetner_ "'l_eor_" of Thez_sl Stresses",
John Wiley, 1960, pp. 262-268.

/
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Substitating (3.35) "nto (3.1) and following the general scheme of the

finite element method, as described Jn Eqns. (3.5) through (3.21), we obtain

Ek]h} = {q}+ {P} (3.36)

where {q], [k], and {Q}are the same as defined before in (3.15), (3.17),and

(3.18) respectively, and

{p} = [A-I] T [J} (3.37)

T

{J}= J_ [s(xi)] [_] {_}dv (3.3S)
x VA

Equation (3.36) clearly indicates that the initial strain plays the

role of an additional external load and may be treated as such. For a

system with single degree of freedom, Eqn. (3.36) is schematically shown in

Fig. 1. The analogy between the thermal effect and the body force has long

been known. The analogy between plastic strain and body force is believed

to have been first brought out by Ilyushin in 1943 [30]. It was also in-

dependently discussed by Lin [37 l

In the solution of the problems by the initial strain method the _j

T

should be known. The thermal strain eli and the shrinkage (or lack of flt)
S P

strain cij are generally given. But the plastic strain ¢iJ is nor: known

beforehand. If the deformation theory of plasticity is adopted, Equation

(3.36) _ after its assemblage for the entire body, may be solved by iteration

[30]. This is done by assuming [P} to be inltislly zero and going through

r_
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an iteration cycle to determine the new value of [P_. Using the value of

[P] determined, the iteration can be repeated until the solution converges

to the desired accuracy. At times this approach may not be v_ry fruitful,

because in general there is no guarantee of achieving convergence. Moreover,

it cGnnot be applied to flow theory. Alternatively, we may use an incremental

scheme by adding the load in small increments. Let

m

[Q(m)_ = k=_l [_kQ_ (3.39)

m

{P(')} = {5:Pl

where the symbol A denotes a finite increment and the superscript m refers

to the number of the load increments, it is possible to establish the

; following algorithm.

[k] [q(m)] = [Q(m)} + [p(m-l} (3.41)

For each increment the vector [p(m-1)} is calculated from the previous step.

Eqn. (3.41), after assemblage, can be so,ved for [q(m)}. The value of

[p(m)] is then calculated for the next increment. For a sizzle degree of

freedom system, this procedure is demonstrated in Fig. 2.

For the calculation of [p(m)} two schemes, which are called the

constant stress and the constant strain methods, have been proposed [31].

These two methods can be easily described for a one dimensional state of

stress. Having solved for [q(m)], the states of strain [¢(m)} and
4"

streis [T (m) ] can be determined. In the constant stress method, the plastic

i
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Q_
/

Q _QA ;:
kct" Q+P

I

/ \tan"_k

o/ _ I .......
q. q.

,_ FIG. I INITIAL STRAIN METHOD
i

FIG. 2 STEP-BY-STEP PROCEDURE (TI3TAL) IN
INITIAL STRAIN METHOD
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J

strain is determined by reading from the given stress-strain curve the

value o: P
_(m) corresponding to the calculated T(m) Fig. 3. Ih the constant

(m)
strain method, the strain calculated in step m, th_t _ 6 , is used to

P

read the plastic strain ¢(m) from stress-strain curve Fig. 4. In Figs. 3 and

4 the quantities _(m)" mnd _tm)" denote the adjusted values _f strain and

stress, respectively. As may be expected, the constant stress method is

reported [35] to have an inherent defect of sudden and catastrophic

divergence. This makes it unsuitable for numerical work. 221e constant strain

m_tnod is also reported to have a slower convergence [35].

x An alternative approach for the solution of problems by the initial

strain method has also been suggested [32]. For this purpose Equation (3.36)

may be written room an increment of loading as

: [k] {e} = + {AP} (3.42)

In evaluating (3.42), reference [32] suggests two procedures. The first,

which " '. called "the direct incremental approach", advocates the use of the

following algorithm

[k] [Amq } = [AmQ } + [Am_lP } (3.43)

If the pattern of loading changes from one load_ng increment to another the K

above algorithm is not very meaningful. According to the theory of the

"linear multlstep methods ''$, it can be sho-_n that although (3.43) satisfies

the requirement of consistency with the differential system, it becomes

I!

*See, for exsmple, J. Todd, ".S.urveyof Numerical Anulysis, McGr,,w-HIII,

1962, pp. 327-340.
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asymptotically unstable if the load-displacement curve at a generic point

tends to become parallel to the displacement axis. The procedure in (Z.43)

is shown schematically in Fig. 5. The second procedure, which is called "the

iterative incremental approach" solves Eqn. (3.42) by an iterative scheme.

This is found to be very time consuming. In general, if incremental approach

is to be used "the tangent stiffness method", which will be described below

appears to be more efficient.

3.2.2 Tangent Stiffness Method

As will be described in Chapter 4, the constitutive law of plasticity

can be s_ted as follows

8Tlj = Cijk_ 6¢k_ (3.44)

where

.... p Emn Pq
cZJk_ = cIJk£ (Tan' _mn' " " xm) (3.45)

For s thermosrress problem C ijk_, which will be referred to as the

elastic-plastic moduli, may be also a function of temperature T. In the

deformation theory of plasticity the expressions given by (3.44) are total

differemtials and can be integrated directly.

By mean value theorem, equations (3.44) can be expressed as

ij =ijk_ . (t)

AT(t) = C(t) _¢k_ (3.46)

where

ijkL 6ijk_ (_mn, _n' zmnpq; xm) (3.47)(t) = (t)

*_n *P
Here t denotos the increment number, v and ¢ are some values of stresGmn

and plastic strain, respectively, within the loading increment. For a
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sufficiently small loading increment the values at the beginning of the

*ran *P
lo3ding step may be substituted for T and mn

6ijk£ _ -_ijk_ mn P Emnpq. xm) (3.48)
(t) - C(t) (T(t-1)' _mn(t-l)' '

This is called here the "first approximation method". It is possible to

employ the techniques of _umerical integration to improve Eqn. (3.48),

The Euler's modified method was found to yield good accuracy for this class

of problem [34]. This method may be stated in the following form

_ijk_ _ _ijk_ (_mn -P Emnpq
(t) -(t) ' emn' ; x_m) (3.49)

where

_mn mn 1 Tmn
= T(t-l) + 2 At

(3.50)

-P P 1 P

¢ = ¢ + At ¢mn mn (t-i) 2 mn

This procedure requires ach step of loading to be repeated once and it is

referred to as the '_econd approximation method:'

Utilizing either (3.48) or (3.49), the elastic-plastic moduli of

Eqn. (3.46) become known. Equations (3.46) is then analogous to (3.9),

except that stress and strain t_nsors are replaced by their respective

increments. In other words, Equations (3.46) defines a pseudo anisotropic,

nonhomogeneoua elastic material for each loading increment. Therefore, the

theorem of minimum potential energy can be used for each increment of loading.

The solution procedures are iden':ical with those given in Equation (3.7)

g

i

1967021775-050



38

through (3.21) except that now [k ] is replaced by

T

r [B(x i)] [C(x i) ] [B(x i)] dv (3.51)[k J: J
V_

and Equations (3.21) is now restated as

The assemblage of the elements and the remaining procedures follow

the usual scheme. Equations (3.52) for the first and second approximation

methods are shown schematically in Figs. 6 and 7, respectively.

m m
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3.2.3 Comparison of the Initial Strain and _.he Tangent Stiffness

Me thod s

The "initial strain" method stated in incremental form

[k] [_q} = [_Q} + [_P) (3.42)

where

T

{_P} : [A-1] [_I} (3.37)'

T

[_J? = f [B(x i)) [E] [A_" 'v (3.38)'

vZ_

and other quantities as defined before, is shown here to be identical to the

x "tangent stiffness" method stated in (3.52). To illustrate, let us a_sume

that the contributit, to [A_] comes entirely from plastic deformation

The plastic strain tensor can be expressed in terms of strain tensor its__If

P]: [a] (3.s3)

Matrix [A] can be defined according to the type of material and the

plasticity law used. A form of [A] is given in (4.44). Utilizing (3.8)

in (3.53) and substituting the results into (3.38) one obtains

[_J] = [k_] [_] (3.54)

where

T

[kP] = _ [B(x i) ] EE] [A] [B(xl)] dv (3.55)

v_

m - ,,,
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Now express {_} in terms of [_q} as in (3.16) and substitute (3.54) into

the (3.37)' to get

[_P} = [k P] {_q} (3.56)

where

T

P [A-1 ] (3.57)[kP] = [A-1] [k]

Substitution of (3.56) into tile (3.42) and transposition of [_P] yields I

[_'] [aq} = [aQ] (3.58)

where

['_] = [k] - [k P] (3.59)

It can be easily shown that [_] is identical to [k] defined in (3.52)

i by considering that

[C] = [E] - [E] [A] (3.60)

Expression (3.60) can be readily verified if we consider the relations

between the increnents of stresses and strains. Therefore, the identity/

of (3.42) and (3.52) is established.
f

i Now consider the different algorithms discusseo in connection with

[ the initial strain and the tangent stiffness methods. Expression (3.43)

after summing over m

_ n

will be identic_l to the algorithm expresseO in (3.41), The only difference

is that of computational procedures.

m m
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In order to compare the algorithm of the tangent stiffness method (3.52)

with that of the initial strain method (3.43), one may proceed as follows.

Using the first approximation method (3.48), expression (3.52) can be written

as

[k(m_l)] [_q? = [_Q} (3.61)

r ] signifies ths£ this matrix has been computed from the in-
where Lk(m_l )

formation obtained in previous load increment. Expression (3.61), after

considering (3.60), may be recast in the equivalent form

% P

[kl {&q}- [.(m_l)] {_q} = [&Q} ¢3.62)

On the other hand, utilizing (3.56), expression (3.43) can be stated as

[k] {_q} [k_m_l)_[__lq}= [_Q] (3.63)

Comparing the last two expressions, it is seen that the difference between

the tangent stiffness method,(3.62), and the initial stzain method, (3.63),

is in the quantity [Aq}, used In the aecond part of the left hand side.

!

1967021775-056



41

i

4. CONSTITUTIVE LAWS OF PLASTICITY

'I
In this chaptpr the constitutive equations of the flow theory of

plasticity are discussed and the forms suitable for finite element method

are derived. Although generality of the exposition ngs been retained, only

the most relevant aspects for the problem considered are given. For a more

complete introduction and further details on the subject the reader may

consult the classical work of Hill [157! and the papers by Koiter [1623

and Naghdi [163].

A constitutive equation is a relation be%ween foz-ces and deformations

for a given material. Although attempts have been msde to construct the

most general form of these relations through axiomatic approach, the complexity

i
of L_.egeneral form looses its utility for the solution of particular

problems. Fortunately, under a given environmental conditions, only a

special form of the general rc ations is needed to 3pproximate closely the

material behavior. Ideal materials, such as elastic, visco-elastic, elssto-

: plastic, thermo-visco-elastlc, and so forth; are defined by particular
&

I' relations between the stress tensor and the deformation of the body. In

the sequel, the discussion is limited to the quasi-ststic, nail deformations "_

of elastic-plastlc solid. The materls] is assumed to be invlscld and sttevtion

is confined to isothermal deformation. For simplicity the quantities are

d_flned in Cartesian coordinates in this chapter.

i A constitutive equatic.n for elastic-plastic solid should include _he

state of stress end strain as well as their -ucrements, t order to account
w

J

m I '
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for history dependence, _,e response of elastic-plastic material can be

described [161] by

(a) an initial yield condition, specifying the state of stress

for ,vhich plastic flow _irst sets in,

(b) a flow rule, connecting the plastic strain increments with

the stresses, plastic strains, and the stress increments, and

(c) a hardening rule, specifying the modification of the yield

condition in the co,_rse of plastic flow.

• 4_.I Initial Yield Condition: m.

The initial yield conditio., is generally represented as a surface in

stress space convex and containing the origin. Experimental evidence with

metals [153] indicates that the hydro_tatl: stress of an order of magnitude

of the }ield s_ress has no influence on the inltiel yield nor indeed does

it affect plastic deformation itself. Also based on the experimental

results it is custotnsry to assume _nat the plasti_ deformation takes place

without volume ehanze

P

eli = 0 (4.1)

For these ressons, it is convenient to decompose the stress _nd strain

tensors into two psrts

1 (4.Z)
= _ij - s6ij, s = Til

and

1 (_.s)
eij = cij - e6ij, e =g eli

i
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where s.. and e.. are, respectively, the deviatoric stress end strain
iJ Ij

and 5.. is the Kronecker delta.
1J

If the materiel is initially isotropic, the initial yield function may

be expressed entirely in terms of invariants of the deviatoric stress

fo = fo(J2,J3 ) (4.4)

where

Jl = s..11= 0

1

J2 = 2 sij sij (4.5)%

1

J3 = _ sij Sjk Ski

are the invariants of the deviatoric stress. A state of stress for which

fo < o will not produce plastic flow, and a state of stress corresponding

to fo : 0 indicates the incipience of the plastic deformation. Various

forms have been suggested for the expression (4.4). Those which are

customarily used and have been verified by experiments are; the yon Mises

_' yield condition [152]

fo J2 k2
= - = o (4.6)

the Tresca yield condition [151]

fo = 4j23 _ 27j32 _ 36k2J22 + 96k4J2 _ 64k 6 = o (4.7)

}

i

i
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and the Prager yield cendition [155J

fo = J23 _ 9/4J32 _ k 6 = 0 (4.8)

The constant k can be assigned based on the results of some simple experiments

such as the uniaxial tension or the pure shear test. Different physical

explanations have been given to interpret expression (4.6) among these the

strain energy de sity of distorsion, the octahedral shear, and the spherical

mean shear are best known. Equation (4.6) is also referred by the names of

other investigators, namely; Huber, Hencky, Nadai, and Novozhilov. However,

the name Mises criterion is the most widely used designation. Expression

(4.6) is sometimes given in terms of the principal stresses as

fo = (0.1_%)2 + (0"2-%) 2 + (%-0"1)2 - 2 2y = o (4.9)

where ffl' if2' if3 are the principal stresses and ff is the yield stress inY

uniaxial tension test. Expression (4.7) was first suggested by Tresca

based on the maximum shear stress criterion in the following form

- ff . = 2k (4.10)
max mln

where _max and _min are the maximum and minimum principal stresses, respectively.

For initially anisotropic material the initial yield function cannot

be expressed in terms of stress invariants alone but may be represented as

fo (Tij) = fo(sij ) = o (4.11)

1967021775-060



45

o

For this case, several forms have beer, suggested. The one proposed by =

Hill [156] is widely cited, and can be stated as

fo 1 _ k 2
= _ Aijk_ sij SkL = o

or,

fo F(T22_T33) 2 T33__II)2 2= + G( + H(TII-T22)

(4.12)
2 2 2

+ 2 (L T23 + M T31 + N TI2) -i = o

where F, G, H, L, M, N are ._- cim3ntal constants. Expression (4.12) is a

x generalization of (4.9) and reduces to (4.9) for isotropic materials.

Similar generalization of Tresca yield condition also have been

proposed.

4.2 Flow Rule

In plasticity, in a manner analogous to the existence of Green's strain

energy function in the theory of elasticity, it is postulated that the plastic

strain increment tensor is derivable from a plastic potential. Stated

symbolically,

P
= 6X-- (4.13)

6¢ij _ij

where

= g (Tij , ¢_j) (4.14)
g

is the plastic potential and 6k is a non-negative scalar. The plastic

potential g may be assumed to be identical with the yield condition. This has

been origlnally proposed by yon Mises [154] and restated by Drucker [158]
¢
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m

as a consequence of the stability postul_te. In the latter case the flow

rule is referred to as the associated flow rule. Expression (4.13) may be

interpreted geometrically as the vector of the increment of the plastic

strain normal to the surface of the plastic potential (the normality rule).

The form (4.13) is applicable to regular regimes where the normal

to the plastic potential is uniquely defined. For singular regimes this

form is replaced by

8¢P. n _gk
, 13 = k:_ 6_'k _ (4.15)

1J

where n is the number of regular regimes which i.eet to form the singular

regime. In the sequel only regular regimes will be considered.

!

i 4.3 Hardening Rule

From experimental results with uniaxial and biaxial states of stress,

it is known that during plastic deformation the yield surface is con-

tinuously changing in size and shape . _ardening rule is concerned

i with the manner of constructing the consecutive yield surfaces. A general

i form of this yield condition, which is sometimes referred to as the loadingfunction, can be stated as
[

P

f(vij' ¢ij' K) = o (4.16) I

" where K Is the parameter of work hardening and is, in general, a function of

the stress and the plastic strain tensors. Since the parameter K can be

incorporated in vii and ¢_j,x Equation (4.16) without loss of generality
may

I
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I

be expressed as

P

f(_ij' _ij)= o (4.17)

Equation (4.17) reduces to (4.11) for the initial yield condition for an

annealed material.

Several hardening rules have been suggested. The isotropic hardening

rule (Fig. 8a), which at the progressively higher stresses predicts a uniform

expansion of the initial yield surface, is used most widely. For isotropic

hardening expression (4.17) reduces to

%

f = F(_..) - _ = o (4.18)
zj

To define the work-hardening parameter K, two well-known measures have been

proposed [157]. Onestates that K is a function of the plastic wor_

only, and is otherwise independent of the strain path, i.e.,

K = G(Wp) (4.19)

where P

ekL

W = J" (4.20)P Tij 6e_j
o

is the plastic work. The other is based on the assumption that the work-

hardening parameter K is solely a function of the so-tailed equivalent

plastic strain. According to this approach

K : H (_P) (4.21)
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where _P is the equivalent plastic strain, defined as follows:
P

= 5_P' 5_P = [ 6¢Pj" 6¢ij (4.22)
o

As pointed out by Hill [157], the above two measures of K are

equivalent for materials obeying the yon Mises yield condition, as it can

be shown that

6W = _ 6 cP (4.23)
P

where the quantity _ is referred to as equivalent stress and is given by
%

In this case, by expressing (4.18) in two alternative forms

f = _- H(¢ p) = o (4.25)

f = _ - G(Wp) = o (4.26)

the relation

dH _ _ d__G_ (4.27)
de p dW

P

holds true between H and G.

The isotropic hardening rule does _ot account for the Bauschinger

effect. In fact, it predicts a negative Beuschinger effect. Therefore,

*The conditions for equivalence of these two measures for other yield

conditions hsvlng homogeneous polynomlsl forms were studied by Bland [160].
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m

isotropic hardening would not be satisfactory for the cases involving un-
i

loading followed by reloading along some nev, path. To account for the

Bauschinger effect, Pra_er [159] suggested a hardening rule which assumus a

translation of the initial yield surface which remains undeformed (Fig.8b).

Prager employed a kinemgtic _odel to describe this hardening rule. For this

reason it is termed "kinematic hardening". This hardening rule can be

represented by

q

f = f°(Tij - _ij) = o (4.28)

._ where _.. is a tensor representing the total translation of the initial
13

yield surface. Prager suggeste4 that the yield surfac_ be translated in

the direqtion c" the normal to the initial yield surface for any increment

: of strain

8_ij = c 8¢_j (4.29)

where the function c is determined by an experiment. For a case where £

is treated as a constant, the process is called linear-hardening. Shortly

after Prager's proposal it was recognized that the properties of preserving

the shape, and of a pure translation of the yield surface along a normal,

do not in general remain Invariant for the stress subspaces. To resolve

this shortcoming Ziegler [161] proposed to replace (4.29) by

, 6_lj = (_lJ - alJ) 6_ (4.30)

where 6_ > o. Here, the magnitude of the plastic strain increment remains free.

i

t

I

)
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" One way to dispose of this indeterminacy is to assume that the vector

c 8¢P. is the projection of 5T . (and thus of 6_. ) on the exterior noz'mal
13 iJ 13

of the plastic potential. This has the advantage that the results of

Prager's rule (4.29) and of its modified form (4.30) will coincide in many

cases. Both rule._ siva identical results for plane strain and also for

a plane stress when T12=o.

Other hardening rules als,o have been advanced. The piecewise linear

yield conditior, which a,.'comodates both translation and expansion of the

yield surface (Fig. 8d), _Jnd the concept of a yield corner stating that the

yield surface changes only locally (FiE . 8c) may be noted. The latter is a

conseqaence of the sllp theory of plasticity.

Numerous tests have been conducted to check these theories, the

results are cont.:adictory end no definite conclusions have been reached so far.

4.4 Strain-Stress Relations

As stated in Chapter 3, the increment of strain tensor may be de-

composed into the elastic and plastic pacts

E

6¢ij = 6¢ij + 66_j (4.31)

The increment of elastic strain is related to the increment of stress

through the generalized Hooke's law

E 61.k_ (4.32)6¢ij = Hijk_
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• For elastically isotropic mgterial

l+v _+ (4.33)Hijk_ - 2E (SikSj 6i_6jk) - E 6ij 6k_

The increment of plastic strain is expressed through the flow rule

(4.13) 0 To determine 6k one may proceed as follows. Since loading from a

plastic state must lead to another plastic state (called the consistency

condition by Prager), from (4.17) one has

_f 6T. + 8f P

6f - 8Ti3 lj _--7 6 = o (4.34)• _¢.. ¢ij
13

" Solving (4.13) and (4.34) simul_aneously one gets

6k = - \ _rk_ 67kLi/_ _Cmn p _T

(4,35)
J

mn

:_ Substituting (4.32) and (4.13) into (4.31) and taking into account (4.35)

one obtains

6¢ij = SijkL 6Th_ (,_.36)

: where

Sijk_ HijkZ ( _g _f )2/_ _g
mn

4.5 Stress-Strain Rels tion

In some problems the inverse of (4.36) is required. Although, it may

be possible to express (4.36) first and then obtain its inverse through the

routine matrix inversion, however, for computational purposes t_ Is desirable

to have the inverse readily available. Moreover, fo_ the elastic-perfectly

f
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" plastic material equation (4.36) cannot be defined st all. Fortunately,

because of special form of the constitutive relations of plasticity, it is

possible to find the inverse of (4.36) in a fairly simple manner. The

procedure is given below.

The generalized Hooke's law (4.32) can be expressed as

8_ij = Eijk_ 6¢_L : Sijk_ (8¢k_- 8_k_) (4.38)

For the elastically isotropic material

Eijk_ = _(Sik6j_+Si_6jk) + X6ijSk_ (4.39)
%

where k and _ are the Lsme's constants

E %)E

- 2()+_) ' k = (i+'_) (1-2%)) (4.40)

Substitute (4 38) and '_• _=.13) into (4.34) to get

_f
6k = h Eijk_. _--_-.. 6¢kj_ (4.41)

ij

where

h-I _ ---_ M _ (4._;

Substituting (4 41) into (4.13) we obtain

6¢Pj = Aijk_ 6¢kL (4.43)

where

AijkL h _ _ (4.44)
= _.rlj i)TmnE_mk_
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Upon substitution of (4.43) into (4.38) we get

57ij = Cijk_ 66k_ (4.45)

where

Cijk_ = Eijk_ - Eijmn Amnk_ (4.46)

Expression (4.45) is the inverse of (4.36) and it can be shown that

1

Cijmn Smnk£ = _ (6ik6j£+6i£6jk)

x 4.6 Special Cases

The general expressions (4.36) and (4.45), may be specialized for

specific cases of yield conditiJns and flow rules. In the sequel it is

assumed that the associated flow rule holds; that is

g - f (4.47)

The special cases of _he isotropic hardening using Hill's measure

of hardening (4.21), and the kinematic hardening with Prager's hardening

rule (4.29) will be discussed next.

4.6.1 Isotropic Hardening

If the material is initially isotropic by taking the equivalent plastic

strain-see expression (4.22) - for the measure of work-hardening, we have

f = F(J2,J 3) - H(e P) = o (4.48)

I
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If, in addition, yon Mises yield condition is adopted, (4.48) may

be expressed as

f = _ - H(_ P) = o (4.49) .

Utilizing (4.49), the quantities needed to express the constitutive

relations can be found. Thus

3
ST.. - ST.. - 2_ sij

ij iJ

(4.50)
1 dH

To determine the strain-stress relation, substitut_ (4.50) into (4.37) to

obtain

1 3 2

SijkL = HijkL + _, (_=_ sijsk_ (4.51)

where

dH
H' - (4.52)

¢

d_P

which can be determined provided the _ -P- curve is given. If the data of
f

uniaxial tension test are used to define H', it can be shown that

1 1 1

H"-r = Et E (4.53) _,,

where Et is the tangent modulus (see Fig. 9)

i
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m
n

The inverse of (4.51) for elastically isotropic material may be

derived by substituting (4.50) into (4.42), (4.44), and (4.46). The

resulting expressions are

s i s

I j
= _(SikSj_+Si_6jk) + k 6ijSk_- 9_2hCijk_

S s

9 ij k_ (4.54)

Aijk£ = _ bLh -2

x For the numerical work it is advantageous to introduce

E

t (4 55)C=_- . ,

then

H' = E (i_-_)

(4.56)

2(l+,)(I-Q
h = E[3-{(I-2_)) ]

:

For the perfectly plastic material _=o,

1
h = -- (4.57)

3_

For the elastic state _ = I, and expression (4.56) gives h=o, as to

be expected.

I l

i
I

l

1967021775-071



56

" 4.6.2 Kinematic Hardening

Here, the Prager's hardening rule (4.29) together with the yon Mises

yield condition is adopted. The yield condition can be expressed as follows

1 -k 2
f = _ (sij-_ij) (sij-_ij) = o (4,58)

where k is the yield stress in a simple shear test, Making use of (4.58), we

obtain

_7ij - _lij = sij - _ij

i" _f (4.59)

p _ - c (s -_ij)
"_¢ ¢ij

= Using (4 59) the expression (4 37) reduces to

1

Sijk_ = Hijk_ + --2k2c (sij-_ij) (Sk£-_k£) (4.60)

The inverse relations .or the elastically isotropic material may be obtained

' using (4.46)

,{

c
_ ijk_= Eijk_ - 4_ h(sij-_lj ) (Sk_-_k_)

: Aijk_ _ 2_ (Slj-_lj) (Sk_-_k_) (4.61)E p(6 6 +6 6 )+ X8
iJk_ i_ Jl i_ Jk iJ kl

I h=, 1

2(2_c)k2

f
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If the data from uniaxial tension test are used to define the quantities

k and c, it can be shown that

1
k- 0

Y
(4.62)

2 2

c=H'

P
where 0 is the initial tensile yield stress and H' is the slope of _-¢

Y

curve.

4.7 Generalized Plane Stress

In the next chapter the stress-strain relations in the state of

generalized plane stress will be needed. Here, the expressions (4.54) and

(4.61) will be specialized for such a case.

In this case Tl3 = o, 6Ti3 = o and further we assume that

6¢13 = 6¢23 = o, hence

6T_8 = C 8y6 6¢y6 + C¢_833 6¢33 (4.63)

6'r33 = C33y6 6¢y6 + C3333 6¢33 = o (4.64)

Solve (4.64) for 6¢33 and substitute into (4.63), to get

6_8 = C 8y6 6¢_6 (4.65)

where

- C_8Y6 C3333 - C_B33 C33y6 (4.66)
C_y6 = C3333
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If the streas increment 67 is represented in its principsl direction,

8nd for the csse where the principal directions of stress do not change

during losding, the expression (4.65) csn be stated in matrix form 8s

I
follows

{} [ if_Tll 61111 cI122 Sell i

= (4.67) )

6722 C2211 C2222 6¢22
k

Utilizing (4.54) and (4.61), the components of C_8Y6 sre found to be

- E
Cllll= r [C �(i-0s223

-- E

CI122 = -_ [_ - (I-_) SIS2] = C2211 (4.68)

1

_ _ Sl2]c2222-_ [_+ (i-0

where

: _i-$)C+ (1-O(sl2+2vsls2 +s2_)

for Isotropic tsrdening using expression (4.54),

rSl : (_n -°"5 _22)/ _

5 : (5,-0.5%1)/ _ _4.69)
9. 2

_,2: _11- _117,.,.+ 7,.,.

snd for kinemstic hsrdening, with the sid of expression (4.61),

Sl (_Ii " 0.5 T22 H' 6 p

: _ _ ell ) /

psth (4.70)

$2 = (_2_ - 0'5 "Ii - _ H' 6,2%)/ my

psth
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If the material is elastic-perfectly plastic, i.e., _ = o, expressions (4.68) ,

reduce to the form

- E

Cllll: s22

- v SIS2 - (4 71)ci122 = - _ = c2211

- E

C2222 = _ $12

where

_ Sl 2 SlS2 2= + 2_ + c2

4. and

_ s2 = (_'22 -0.5 _ll ) / ay

which is identical for both (4.69) and (4.70).

It may be noted that for the elastic state, when _ = 1, expr_.ssion

(4 68) together with (4.69) will reduce to the well-known exoressions of the

elasticity

.p
[ Cllll = C2222 1__2

(4.79.)

CI122 = C2211 - 2
i-_

Expression (4.70) for kinematic hardening, however, cannot be reduced directly

to the elastic case. Therefore, in the solution of elastic-plastic problems,

based on the assumption of kinemstic hardening, the expression (4.72) should

.|,
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be used for the initial stages of loading (elastic), and during the un-

I loading process.

For nulaerical work, the relations between the increments of the plastic

strain and the increments of total strain, equations (4.43), are needed. For

this purpose, the equation (4.43) may be specialized for the case of

generalized plane stress, referred to the principal directions. The results

can be stated as

I1I i
p - 6ell" 6¢I1 allll AI122

p = _ _ (4.73)

,_ 8¢222 A2211 A2222 J 8¢22

! where

A111t= (I-O S1 (SI + vS2) / n
m

Al122 = (I- 0 S1 (S2 + vSI) / n

A2211 = (i-0 Sz (S1 + _S2) / n (4,741

A2222=(1-0s2(s2+_l)/a
J

!

n = (_-_ _ + (1-O (sl2 + 2vats 2 + s22)
?

The quantities SI and S2 are the same ss those defined in (4.69) for

isotropic hardening and in (4.79) for kinematic hardening.

_ 4.8 Loadin_ Criterioni

i In the incremental procedure of solution of the elastic-plastic

problems, in sddition to the constitutive relations, it is necessary to

Jk
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have s criterion for loading and unloading. For this purpose the following

criterion is available

_'--_f _ I Loading

6Tij 0 Neutral Loading (4°75)

mJ Unloading

Fo_ each step of loading, expression (4.75) is first determined, and

depending on the sign of (4.75) the appropriate constitutive relations are

used for the next increment. For instance, for isotropic hardening the

expressions (4.68) are used for loading; for unloading, the elsstic relations

(4.72) are utilized. For isotropic hardening, instead of (4.75), the

following criterion may be used

I Loading

6F O Neutral Loading

Unloading

where F is defined in (4.48).
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FIG. 9 STRESS-STRAIN CURVE
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5. ANALYSIS OF ROTATIONAL SHELLS

Throughtout this chapter the Ki:cchhoff-Love hypotheses together with E

ithe small deflection theory are adopted. Tile tangent stiffness method, dis-

cussed in Chapter 3, is employed and the derivation of element stiffness

matrix, for a typical increment of loading is presented. For the sake of

brevity, the symbol _ in front of all kinematical and mechanical variables "_

will be dropped. The formulation is confined to axlsymmetric loading _nd

support conditions.

The details of the derivation of the element stiffness matrix is given
x

_nd the corresponding matrices are tabulated in Appendices A through F.

Although the formulations ai_ given for rotational shells the cases of

cylindrical shells and circular plates are contained as special cases.

5.1 Equilibrium Equations

In rotational shells for axisymmetric loading, among the six equations

of equilibrium of shells, three equations are identically satisfied.
J

Adopting the sign convention for positive qusnti£ies as shown in Fig. I0,

,
the remaining three equ6tlons of equilibrium can be stated as follows

d

(rN a) - NO cos # - r_ Qs + ;Ps = o

d r

_ (rQ s) + No sin $ + --N s - rPr -- orl (S.l)

d

(rM) -M O co-, ® + rQs = o

*See, for example, Tlmoshenko and Wotno_sky-Krleger, _'Th._eory of Plates end
t_

Shells, 2nd ed., McGraw-Hlll, 1959, pp. 534.
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The quantities N N Ms M0 Qs Ps and Pr are shown in Fig. 5 and areS' (_' ' ' ' ' _,

defined in the nomenclature.

Eliminate Q among (5.1) to obtain

s
5

d_ (rN) + 1 d (rM) - ( + N O) cos ¢ + r Ps = o
ds s r 1 ds s r 1 _ •

d 2 dM0 M0 rN (5.2) -_

-- (rMs) - ---- cos ¢ + ( - NO) sin ¢ s r i2 ds _ - rT + rp = o :ds

/

5.2 Strain-Displacement Relations

Adopting Kirchhoff's hypotheses and Love's first approximation, the

strain-displacement relations for axisymmetric small deform'_tion of shells

of revolution can be stated as

S _

?
= + _ (5.3)

o KO
• ¢e ¢e

4.
,{

where

o du w
£ = _+ _ I ----
s ds rI

(5.4)
o 1

e0 = --r (u cos ¢ + w sin ¢)

are the strains of the middle (reference) surface,

\

K = -dx
s ds

(5.5)
cos ¢

K8 = r X

*Ibid, pp. 534-535.

I i
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are the curvature changes, and

dw u (5.6)
X- ds r 1

is the meridional rotation. The subscripts s and e, respectively, refer to

the meridional and circumferential variables. The quantities u, w, X and

with positive sign are shown in Fig. Ii.

For future use equations (5.4), (5.5), and (5.6) will be represented

in terms of a new set of variables. Expressing the displacements of the

middle (reference) surface of a shell in local cartesian coordinates _-_,

%

the following relations between (u,w) and (Ul,U 2) hold, Fig. 12

' = (5.7)

w L-sin _ cos 8 u2

In the following treatment, by applying the chain rule of differentiation,

differentiation with respect to arc length s is replaced by differentiation

with respect to normalized cord variable _ using

ds = _d___ (5.8)
COS_

where _ is the cord length AB, Fig. 12. Making use of (5.7), (5.8) and

the relation

d.._ _ cos2_ (5 9)
d_ = d_2
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one can recast expressions (5.4), (5.5), and (5.6) as follows:
I'

o 1 du du 2

£s = _ (_- + _- tan _) cos2B

(5.10) !
o 1 (U 1 sin_ + u 2 cos _) :_

¢e = r

K 1 E_ui d2Ul du2 1_" 2
S = _ 5-- _" (1-tan2 _) cOs2 _ + --d_2 tan B + 2 _ tan_ cos _ ;

du 2

2 ]c°s 3 [_ _-

d_2 (5. ll)

Ke _ 1 (dUl du2 _x £r _dT tan 8 - dT (sin _ + cos _ tan_) cos 3

and

1 du du 2

t

where

d_2 I

The relation _ = _(g) will be discussed in section 5.6 of this chapter.

5.3 Stress-Strain Relations

For shells of uniform thickness, any thin layer parallel to the

middle surface is assumed to be in the state of generalized plane stress.

If the shell is of variable thickness, this assumption is still taken to

be valid for a thin layer whose thickness varies in proportion to the shell

thickness itself. Therefore, the relations between the increment of

stresses and strains for axisy,metrical deformation, as stated in (4.67),

i
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can be written as

= (5.13) v

L're Ces Coo 60

or symbolically

[_ = [C] {e_ (5.13) 2
2xl 2x2 2xl

., The matrix [C] is in general a function of the state of stress and history

_ of loading for s generic point and hence it is a function of the coordinates

of the point in question. The dependency of [C] matrix on the state of

|
stress and history of loading can be accounted for by the procedures stated

I in (3.48), or (3.49). Since the deformation is sxisymmetric, the matrix

[C] for a material point in the plastic state is independent of the

coordinate e, that is

t

[C] : [C(s,_)] = [C(_,O] (5.14)2x2 2x2 2x2

It may be noted that although the transversal shear stress Tar does

not vanish, it does not enter into the stress-strain relations as the result

of the Kirchhoff hypothesis.

5.4 Potential Energy

2he potential energy of s rotational shell undergoing sn sxiaymmetric

de2ormatlon under an increment of surface loading and in the absence of

body and inertial forces can be expressed as
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T

_here

1

8 = _ (T 6 + roe e) strain energy density (5.15;
i s s

dv = (I + _-) (i + _--) d_ dA - dc dA volume element (5.17)
rI r 2

dA = 2_ r ds = 2TTr _vow=='iaan area element of the middle _o_oj'=.l°_
(reference) surface

;%

A - pert of middle (reference) surface where loadingT

.._ is specified

! -
m - meridionsl moment per unit area of middle (reference)

surface

C - edge(s) of shell-parallel circle(s) -

and the bar over Ps Pr m Ns q end M indicates that these quantities

! ere specified. The approximation expressed by (5.17) is consistent with

the Love's first approximation.

Substitute (5.3) into the (5.16) and then integrate over the

thickness of the shell to get

h

_h 1 o o =_1[_}Ti' 8 dC g (Ns= £s+No¢o +M Ks + [_} (5.19)
_ _ s MOKO) -- Ix4 4xl

2

where

= _ dC (5.20)
N,'_ _h 'reNo _ _.

w
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are the in-plane forces per unit length,

I r2 C dC (5.21)
Me = _Jh_ %

2

are the bending moments per unit length, and _

T

o ¢; Ks Ke > (5.22){_} = <es
Ix4

T

[11l] = <Ns Ne Ms Me > (5.23)lx_i
%

superscript T denotes the matrix transpose. Again, it may be noted that

expressions (5.20) and (5.21) are valid wi=hin the limitations of the Love's

first approximation.

Substitute (5.13) into (5.20) and (5.21), then making use of (5.3)

to get

- co
Ns DII I DI2 s

I

i o i:

Ne 2x2 I 2x2 co 1 I

- - "-- _ --- (5.24)

L Ms D21 I D22

i

Me _2x2 I 2x2 KO

4xl 4x4 4xl

or symbolically

[_] -- [D] [,} _5,24)2
4xl 4x4 4xl
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where
I

h

LDII ] = [C(g,_)] d_
h

2x2 2 2x2 I

[D12] = [c(g,O] C,d¢ = [D21] (5.25) _t_

2x2 h 2x2 2x2

2

h

[D22] = ,[2 FC(_, 0 ] _,2 d_;
2x2 h 2x2

-- m

2

[D] will be referred to as the rigidity mstrix.

Upon substitution of (5.24) into (5.19), expression (5.15) msy be ststed

ss follows

T T T

_(u,w) = _ _ {_} [D][¢] dA - [v] [p} dA - _ [v} {P} dC (5.26) ,

A _ C

where

T

{v] = ( u w x ) (5.27)

T

{_] = < ;,Jr_ > (5.28)

f_]T= ( SsQs Ms) (5.29)

It can be verified that the first vsriation of _ in (5.2_)

611 = O
UpW
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yields the equilibrium equations (5.2) as its Euler equations.

5.5 Evaluation of the Rigidity Matrix [D]

The rigidity _ trix expressed by equations (5.25) can be evaluated by

employing any method of the numerical integration for definite integrals, i

At sections where the stresses due to bending moment dominate those

due to membrane (in-plane) forces, the stress distributions across the

thickness have a high gradient. These sections, in general, are more suscep-

tible to the early on-set of plastic deformation, For an adequate

representation of the elastic-plastic moduli [C] at such sections by means

of interpolating functions, the values of these moduli must be calculated

st a number of points sufficiently clnse to each other This requirement

is particularly needed to adequately account for the history of the

deformation process. Since the values of [C] should be available at a

great number of points, the integrals (5.25) can be determined with the aid

of some simple methods of the numerical integration. The discussion of

two of these methods will follow.

5.5.1 Application of the Rectangular Rule

The shell thickness is divided into a number of layers. The values

of [C(_,_] are evaluated st the center of each layer of the selected cross

sections. It is assumed that the material properties do not vary along the

thickness of the layer. The problem may then be thought of as one con-

sl_tlng of s shell made of snisotroplc elastic thin layers. The integration
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of (5.25) csn be csrrieJ out ss follows

[Dl1(_)] = [DI( _)]

2x2 2x2

1

[D12(_)] = [D21(_)] = [D*(_)] - _ h(_) [DI( _)] (5.30)
2x2 2x2 2x2 2x2

1

[D22(_)] = [D2(_)] - h(_) [D*(_)] + _ h2(_) [DI(_) ]
2x2 2x2 2x2 2x2

where

n

• [DI({) ] = k__Z1 [C({,h k) ] (h k - hk_ 1)

1 n (h 2 h2 1 )[D*(_)] = _ k=_l[C(_,_k)] - _
(5.31)

= 1 k_ 1 [C(_,_k)] (h3 - h3 1)[D2(_) ] 3 =

1 - h)hk = 2 (hk + hk-i

The qusntities h k sre ss shown in Fig. 14.

If the Isyers sre tsken to be of equsl thickness, i.e., hk = (k h)/n,

the expressions (5.31) csn be represented in the following form

[DI(_) ] h(_) n= n k--_ [C(_'hk) ]

2z2 2x2

[v*(_)] = h2(D n
2x_ n2 k=r_ [c(g,_k) ] (k - _) (S._2)2x2

,P

[D2(_)] h3(_ n 1= 3 k=F"l [C(_'ik)] (k2 - k + _)
2x2 n 2x2 ""
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FIG. 14 SHELL THICKNESS
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where =

2k-i

Note that it is preferable to take n to be an even integer.

5.5.2 Application of the Trapezoidal Rule

As in the previous case, the thickness of shell is divided into n

number of layers of equal thickness. The values of [C(_,O] are determined

at the interfaces of layers as well as st the upper and lower faces of the

shell proper. Then, the expression (5.25) can be integrated and the results

are as follows

[Dn(g)] _n [C(g,_)] + k=S2[c(g,_)] + g
2x2 2x2 2x2 2x2

: n _n+ i:l q= 1 )
2x2 2x2 2x2 2x2

_- Cc(_ ][D22(g)] : h3(-_n [C(g'_l) ]( + k_2 Cc(g'_k ) ]( ) + 2 '_n+l ) "_

2x2 2x2 2x2 2x2

(5.33)

where

It may be noted that for the integration of the rigidity matrix, it

is not necessary to think of a shell consisting of Isyers. Other inter-

polation functions may be selected to approximate the variation of the

material properties along the thickness.
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5.6 Representation of the Element Geometry

Here the objective is to define the geometry of the middle (reference)

surface of s typical shell element. Since the shell proper is axially

symmetric, it is sufficient to define the shape of its meridional curve.

It is possible to develop the stiffness matrix for any special type

of a shell without idealizing its geometry. But if versatility is required,

it is necessary to select an element wh__,, c_n closely idealize any

meridional shape of a shell of revolution. For this purpose two alternative

approaches may be conceived.

x One consists of expressing the geometric variables, which enter into

the strain-displacement relations and are functions of surface coordinates,

in polynomial forms. These geometric variables are the coefficients of the

first and the second fundamental forms of the reference (middle) s_irface.

The unknown coefficients of these polynomials are determined by specifying

the values of the geometric variable for any given shell at selected points.

This approach has two shortcomings:

(a) The geometric variables are not independent and in

general they have to satisfy the Gauss-Coddazi relations.

These relations can not be identically satisfied.

(b) For some regions of a shell the procedure of

determination of the unknown coefficients becomes

ill-conditioned.

m
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I
This approach was used in Ref. [26] by expressing cos _ as

2

cos _ = C1 + C2 s + C3 s

where s is the arc length. As the result, in regions of a shell where

is close to zero, the determination of C1, C2 and C3 becomes ill-conditioned

and the stiffness matrix obtained on the basis of these coefficients is

inaccurate. In addition sin _ can not be expressed exactly by a polynomial

of s in terms of constants CI, C2, and C3. Although this approach is

quite general and can be used for any type ef shells, this special case may

x clarify the two shortcomings mentioned above.

The alternative approach consists of replacing the given merJdional

curve by a substitute curve which matches with the original curve at

selected points. This substitute curve may be represented either in a

local or global coordinates. The latter scheme turned out to be ill-

conditioned for the limiting cases.

In this dissertation the scheme of selecting a substitute curve in

local coordinates is adopted. Figure 15 shows s manner of representing

this curve. Two types of orientation for the curved element are shown in

this figure. With the sign convention indicated in Fig. 15, the following

relatiop spplies

+ _ + 8 = _ (5.34)

By adopting the sign convention stated in Fig. 15, and utilizing the relation L.

(5.34), other orientations of mertdtonal curve and local coordinates _-_

can be readily treated.
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Two kinds of substitute curves have been utilized in this dissertation.

In one, the curve passes throdgh the given end points (nodal points) and

at these points has the same slopes as those of the specified curve itself.
I-

If the normalized abscissa _ is used - that is the abscissa is divided by

the cord length -, the equation of the substitute curve may be expressed

ms follows

= _ (l-_)(aI + a2 _)

where

= tan 8ia I

= - (tan 8i + tan 8j)a2

The second type of curve was chosen such that, in addition to

accomodsting for the specified slopes, the end (nodal point) curvatures

can also take the specified values. The equation of this cur_e may be

represented as

= { (i-{)(aI + a2 {+ _3 {2 + a4 __3) (5.36)

where

= tan 8ia I

1 #

s2 = tan 8i + g "_i

I]_-_")a 3 = - (5 tan 81 + 4 tan _j) + (_ i

1

a4 = 3(tan 8i + tan 8j) + _ (_; - _)

_. = d___ -
dg 2 = rlcos3 8

is the cord length.
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In the above expressions, rI is positive if the meridional curve is convex

with respect to the positive _-axis.

The parameters in (5.35) and (5.36) can be determined from input data

as follows:

_r --- r. - r.

3 l

_Z = Z. - Z.
j i

½
= + _.2]

(5.37)

sin _- _

cos * -

sin 8n = cos q0 cos _ - sin _n sin

, n= i, j

COS _n = sin _0n cos @ + cos _n sin

Having established the substitute curve, we can express all the

geometric quantities which enter into (5.4) and (5.5) or (5.10) and (5.11)

as follows

tan 8 = _'

r = ri + _ (sin _ + _ cos _)

d cos8 d (5.38)

ds _ d_

i_= 1 da_ C°S 3

rI _ d_ 2

mm m
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COS _ = sin 8 cos _ + cOS 8 sin _ = (_' cos )+ sin 4) cos 8

sin _ = cos 8 cos _ - sin 8 sin _ = (cos _ - _' sin _) cos

where

It may be noted that other substitute curves, which match with the given

curve at some intermediate points, could be employed also.

5.7 Displacement Pattern

• As discussed in Chapter 3 the essential feature of the displacement

model of the finite element method is the expansion of displacements in

|

I terms of a relatzvely complete set of functions in a small sub-region.
Although these base functions can be chosen arbitrarily, polynomials are

the most suitable forms for numerical work.

In the analysis of shells by the finite element method using curved

element the displacements may be expressed either in surface coordinates

or in local Cartesian coordinates. The fDrmer is in general a curivilinear

coordinates.

Expressing the displacement in the surface (curvilinear) coordinates

' has the advantage that the compatibility of the displacements at the inter-

faces of the adjoining elements can be easily achieved. But since the

displacements are generally expressed In polynomial forms, the inclusion

of rigid body modes creates a formidable problem.

i

J
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It is possible to separate the rigid body and deformation modes in the

displacement expansion. For the case of axisymmetrie deformation of shells

of revolution the displgcewents may be expressed as follows

U = Ur + t:d

(5.39)

W :- Wr + Wd

where the subscripts r and d refer to rigid body and deformation components,

respectively. For the problem in question only a single rigid body mode,

_ranslation along the axis of symmetry, exists. By introducing a constraint

(support) parallel to this axis at a location along the meridian, it is

possible to separate these two types of modes. Imposing s constraint at

the locstion shown Jn Fig. 16, the displacement components for the rigid

body translation can be expressed as

Ur = - _I sin _0

(5.40)

Wr: a1 cos

and the one for the deformation modes as

ud = a2 cos _oi + a3
o < _ _ 1 (5.41)

wd = az sin _oi + a4 _ + a5 _Z+% _S

where _'s are the generalized coordinates. The number of generalized

coordinstes is taken to be equal to the number of degrees of freedom of the

element, two displacements snd one rotation st each node. It may be verified

1967021775-100



85

b

that at node "i", Fig. 16, the component of the displacement along the axis

of symmetry arising from the deformation mode vanishes

V i = - ud sin _Oi + wd cos _i _ 0

Although the above procedure provides a means for accomodatin_ rigid

body modes, it has a serious shortcoming. A necessary condition for s

solution by the finite element method to converge uniformly is that the assumed

deformation patterns should contain the constant straining ,nodes. A close

scrutiny of (5.41) reveals that it does not meet this requirement. For

instance, consider the case of uniform expansion of a shell, that is when

w = const, and u = o.

_ The second approach, that is representing the displacements in a local

rectilinear coordinates, has the advantage that the requirement of the

rigid body mode for each element can be automatically fulfilled. For a

general type of shell, this approach has a shortcoming that it becomes

difficult to satisfy the compatibility of displacements at the element

_ interfaces. Fortunately, however, for axisymmetric deformation of

rotational shells this creates no problem. Taking the _-_ axis as the local •

coordinates, Fig. 12, the displacements may be expressed as

ui:5+%_
o _ _ _ 1 (5.42)

, u2_-% �%g �%g2�% g3
i

i
Z

mm _ N
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Since the displacement patterns (5.42) are relatively complete, the uniform

convergence of the solution by reducing the size of elements is assured.

Comparison of these two approaches is given in Chapter 6 in a numerical

example. For the membrane type of shell the second approach was found to be i

superior to that of the first one. i

For future reference the displacement pa_terns (5.39) and (5.42) will

be specialized for the case of a central cap. Fig. 17. Because of symmetry,

at the point located on the axis of syn_etry the component of displacement

perpendicular to this $xis and meridional rotation vanish. Utilizing these

x internal boundary conditions

Ui=O

(5.43)
?

X_ =0 _.
:

where 1

U = u cos _ + w sin _ = uI sin _+ u2 cos _

dw u i dUl du2 2

X = ds r 1 = _ ( d_ tan B + _ ) cos

in connection with the expressions (5.39), one obtains

@2 = _4 =0

Hence, for the central cap the expressions (5.41) should be replaced by

Ud = 0'3_

Wd = 0'5_ 2 + aS_:3 (5.44)

m m
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Similarly, the relations (5.42) giver in terms of the local rectilinear 0,

coordinates specialize into the following: i
7

i

Ul=- 5 cos +
(s.45)

U2 = _ sin , + _3g tan 8i + _5 g2 + _6g 3 !

Note that the number of generalized coordinatem _'s has been reduced to four

which is equal to the number of Jegrees of freedom for the central cap.

It may be interesting to note that for a closed shell the governing

x differential equatzons expressed in finite difference forms become singular

at points located on the axis of symmetry; %harass in the finite element

method thiB singularity can be removed by imposing the internal boundary

conditions and restricting the displacement field. This is important if the

solution of s closed shell near the axis of symmetry is to be found and is

one of the advantages of the finite element method.

Although in tb_ above derivation the number of _'s was taken to be

equal to the number of degrees of freedom of the element; it is possible to
i

take a greater number of _'s and then using a general condensation procedure

to establish the force displacement relations at nodal circles. !

5.8 Element Stiffness Matrix

The general scheme discussed in Chapter 3, that is the procedures

explained in connection wzth Equations (3.6) through (3.24), will be

specislized for s curved element. Representation of the displacement bot_
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in the surface and the local (recoil:near) coordinates will be employed.

For future reference the element stiffness matrix derived through the use

of displacement expressed in surface coordinats is designated by FDC (i)

(Frustum whose Displacements are expressed in C__urvllinear Coordinates) and

the one in local Cartesian coordinates by FDR (i) (Frustum whose Displacements

are expressed in Rectilinear Coordinates ) The index """• i is assigned unity

for the meridional curve given in (5.35) and it is assigned 2 for the one

stated in (5.36).

Utilizing Equations (5.4) and (5.5) or (5.10) and (5.11), together with

(5.41) or (5.42), the strain-displacement relations may be expressed as

follows

{_?= [B? [_} (_.46)4xl 4x6 6xl

where [¢] is defined in (5.22) and the matrix [B] is given in Appendix A.

For a closed cap the expression (5.44) or (5.45) are to be used and the

corresponding [B] matrix is given in Appendix B.

The relations (5.39) or (5.42) together with the relative expression

for meridional rotation may be represented in matrix form as

{v] = [*(g)] [_] (5.47)
3xl 3x6 6xl

where

T

[v]_< u w × > forFDC
C

and

T

[V] = ! U1 U2 X ) for FDR
R
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The matrix [¢(_)] is stated in Appendix C.

The surface loads in (5.28) can be expressed in terms of interpolating

functions. For a linear interpolation it may be written as

{p(_)} = (i-_) [pi} + _ [pj} (5.48)
3xl 3xl 3xl

For a sufficiently small element the variation of thickness and elsstic-

plastic moduli along the meridian may be approximated linearly

h(_) = (i-_) h. + _ h. (5.49)
z j

[C(_,{)] = (I-_) [C(O,_)] + _ [C(l,O] (5.50)

2x2 2x2 2x2

Expressions (5.49) and (5.50) can be utilized to evaluate (5.32) or

(5.33) explicitly. It may be noted that although linear interpolation for

surface loads, thickness, and elastic-plastic moduli is suggested in (5.48)

through (5.50); other interpolation formulas may be used as well. Then it is

necessary to specify these values at intermediate points.

Having employed (5.26) for an element, the element stiffl.ess matrix

and generalized forces as defined in Equations (3.11) and (3.12), respectively,

can be expressed as

I T 2_

[ko_ ] = J" [R(_)] [D(_)] [B(_)] r(_) _ (i-_') d_ (5.51)
0

6x6

1 T l+Ti,2){QOl} = J* [¢(¢)] {p(_)} r(_) _, ( d_ (5.52)
0

6xl

q
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where the common factor of 2_ in front of the integrals has been dropped.
i

The quantities required to evaluate (5.51) and (5.52) have already been

defined in (5.32), (5.33), (5.46), (5.47), mud (5.48). In (5.52) it was

assumed that no body force is present, i

The evaluation of integrals (5.51) and (5.52) cannot be easily

achieved in closed forms. However, the techniques of numerical integration

can be used to advantage to evaluate these integrals. The Gauss' integration

foi .is was utilized in this dissertation.

Corresponding to the displacement transformation matrix [A] in (3.15)

x the following relations hold

t_v _t{q]= = [A] {_] (s53)
6x6 6xl

The matrix [A] and its inverse are given in Appendix D. With the aid of

[A-1] the element stiffness matrix and generalized forces can be transformed

into physical coordinates Iv} and may be stated, as in (3.17) and (3.i8), as

T

[k] : [A-1] _] [A-1] (3.17)6x6 6x6 6x6

T

{Q}= [A-1] {%] (3.18)

The matrices [k] and [Q} defined in (3.17) and (3.18) are defined in

local coordinates. In order to assemble the elements, these matrices must

be expressed in some global coordinates. If the r-z coordinates are taken

See, for example, "Handbook of Mathematical Functions," edited by M.

Abrsmowitz and I.A. Stegun, National Bureau of Standard, 1964,

pp. 887.

q
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as the global coordinates, Fig 15, the transformation can be stated as

6x6 6xl

where

t tat{r } : - ; {ri } : Uz
6xl

rj, 3xl X i
6x]

3xl

The matrix IT] is given in Appendix E.

Alternatively, if the slope of the meridional curve is continuous,

%

the surface coordinates (s,e,O at nodal circles may be employed to assemble

the element stiffness matrices. The transformation is similar to that of

(5.54) except that {r} should be defined as

T

{ri} : ( u w X_,
_ ix3

and the corresponding [T] matrix is expressed in Appendix F.
'I

Utilizing (5.54), the expressions (3.17) and (3.18) are transformed

into !-

T

[kb] = [T] [k] IT] (5.55) i
6x6 6x6 6x6

T

6x6 6xl

With the aid of (5.55) and (5.56) expression (3.21) can be expressed

as follows

[kb] {r} = {Qb} (5.5_)
6xl

6x6 6x]

I
I
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Using the direct stiffness procedure, Equstion_ (5.57) can be combined

for all elements to achieve compatibility and equilibrium st nods1 circles.

This will lead to a set of simultaneous equations, as in (3.22)

[K] [r_ = {R] (3.22)
NxN Nxl

where N is the number of degrees of freedom of the system. The stiffness

matrix [K] is in general a tridiagonal matrix. Having solved (3.22), the

stresses can be computed as explained in (3,23).

5.9 General Procedure

The procedure to analyze the elastic-plastic deformation of shells of

revolution, utilizing the scheme described in this chapter, can be outlined

as follows. The shell is assumed to be initially free from residual

stresses. The first increment of loading is applied and the magnitude of

the load is scaled such that plastic deformation just sets in at some region

within the shell. The loading is then continued in small increments. For

each increment, equations (3.22) are solved for nodal displacements and the

increments of the strain are determined using equations (5.46). The in-

crements of stress and of plastic strain are obtained with the aid of (4.67)

and (4.73), respectively. Then the criterion for loading (4.75) is checked.

For the case of loading, the equivalent plastic strain increment (4.22)

= J p2/3

I
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is computed and is added to the previous equivalent plastic strain,

(nl) (m-l) + _p

where m refers to the number of loading increment. If the data of uniaxial

test are given, the value of _m)_ is used to read tangent modulus E t and

equivalent stress _, Fig. 9. Since the data for uniaxial test are generally

given in the form of a table, linear interpolation is used to obtain the

values of E t and $ for intermediate points. The value of $ is utilized to

modify the new state of stress. The quantity E t together with the modified

x state of stress is used to establish the new material properties, Equations

(4.68) and (4.74). This will provide sufficient information to proceed to

the next increment of loading. If the "second approximation method", Eqns.

(3.50), is used, each step of loading is to be repeated as shown in Fig. 7.

The problem of convergence is largely dependent on the type of

, material properties and the geome£ry of structure. For the solution of any

problem the results for different magnitude of l_ading ipcrements are to be

compared and the optimtim size of loading increment is to be selected. It

was observed that for h_rdening materials a larger value of loading increment

can be selected compared to that of perfectly plastic materials. In

addition, for loading close to the collapse load the analysis becomes very

sensitive and requires a smaller size of loading increment to be used. With

the availability of computer program, however, the trials for optimum loading
i

increments are not very laborious, i
i

i
|

i
I
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6. .NUMERICAL EXAMPLES

In this chapter, the procedures discussed in previous chapters are

applied to some sample problems. First a brief description of the computer
i

program is given. Then the different elements whJc _ were developed are i

compared, and the best elelaent is selected. Two examples are worked out for

the elastic range, and the solutions are compared with theoretical and

experimental results which are avail° 'e in the literature. Finally_ two

examples for the elastic-plastic range are analv22d.

x
6.1 Description of the Computer Program

A computer program using FORTRAN IV language was developed for the

solution of rotational shell problems using the method discussed in the

previous chapters.

The general procedures of the computer program are indicated in the

concise flow chart shown in Figure 18. Each block in this chart is labeled

and a few remarks concerning the blocks are mentioned below:

1. Input data are read from the input deck. The program can

treat examples with number of nodes up to lO0 and number of

layers up to 20. The number of load increments is not restricted.

However, the ful] capacity of the core storage, 32768 locations

of IBM 7094, was not completely utilized. The dimension statements

may be modified to accommodate UP to 200 elements. For higher

number of elements an out-of-core storsge is to be employed.
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The program provides for a linear variation of element

thickness along the meridian. Therefore, any variation of

shell thickness may be approximated by linear variation within

each element,

For a closed shell, numbering of nodal points should be

started from the point on the axis of symmetry. !

2. The matrices [B], defined in Appendices A and,B,, are computed

at several points within each element and are stored on tape.

The tape is later read back to calculate the element stiffness

%

matrices [k_], see (3.11). The matrices [A -I] IT] defined in

Appendices D, E, and F are also computed for each element and

are stored on tape. This tape is used to transform [Q_] and

[k ] to [Q] and [k], respectively. In addition, the matrices

[B] computed at the ends of each element are stored to determine i

the increments of strain.

i

3. The app±ied load increment which may consist of concentrated

and distributed loads are read. The distributed load is

transformed to equivalent nodal circle load using (5.52) and

(3.18), then they are added to ring (concentrated) load to

establish the load vector [r}. To facilitate the data preparation,

the intensities of distributed load at nodal circles are read

and linear interpolation is used to account for variation along

the meridian, see (5.48).
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Integration of (5.52) is carried out by Gauss' method of

integration. Exa_,ples with different number of integration

points were worked out and the results were compared. In most

cases no significant changes in the results were observed after

increasing the number of integration points above 5. For 1

conformity with the integration of (5.51),10 integration points

are taken for each element.

4. The rigidity matrices (5.25) are established using the procedure

given in (5.30). A linear varlation of the material properties

j.

x along meridian is adopted for each element. With the aid of

[B] computed in block No. 2 and rigidity matrices, the stiffness

matrices [k ] is computed. As mentioned before, the integration
T

of (5.51) is achieved using Gauss' method of integration.

Having obtained [k ], the element stiffness matrices in global

coordinates are established. The assemblage of stiffness

matrices, to set up [K], is fulfilled using the direct stiffness

method.

5. Solution of (3.22) for Jr} is obtained using Gauss elimination

method. The properties of symmetry and band structure of [K] are

taken to full advantage in storing this matrix and in the

solution of the simultaneous equetions (3.22). Since [K] is

positive definite no pivoting is required.

6. Having determined [r] and generalized displacements [G}, the

strain increments and stress resultants are obtained using (5.46)

and (5.24), respectively.
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" 7. The procedure for computing the new material properties for

each load increment is illustrated in the flow chart as shown in

Figure 19. The chart indicates the procedure for a typical

loading increment m. Notations are mostly those used in Chapter
4

4. Quantities with subscript T are temporary and are adjusted, i
!

In this diagram; branch (I) indicates that the material point !

is still in the elastic state, branch (II) corresponds to the

initiation of plastic deform3tion or reloading after an unloading,

and branch (III) is associated with the continuation of loading.

Here, the term loading signifies the loading which produces

plastic deformation and corresponds to the state of stress in

the neighborhood of a material point. M_trix [a], with a change

of notation, is defined in (4.74). To expedite convergence the

expression in block 4 is replaced by _T < 0.999 _m-l" i

The procedure shown in this chart is applicable to

isotropic hardening as well as to perfectly plastic material,

Equations (4.68) and (4.69). With a slight modification,

kinematic hardening can be also treated by replacing (4.70) for

(4.69) and making appropriate modification for loading criterion.

As far as computer time for the whole process is concerned,

this mainly depends on the number of elements and the number of

loading increments. As a guideline, for a solution with about

30 elements and 20 layers the computer time for the execution

of the first loading increment is one second/element and for the

execution of sny other loading increment is 0.8 second/element.

The execution time per element reduces if the number of elements

increases.
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6.2 Comparison of the Elements

Two types of elements, designated by FDR(i) and FDC(i) , which were

discussed in Chapter 5 are compared here by means of s numerical example.

Geometry of all of these el_ments are expressed in local Cartesian coordinates

_-_, (5.35) and (5.36). Other curved elements were also developed in terms

of their intrinsic geometry. Their formulations are more involved and require

some 8pproximstions. The numerical examples indicate that they yield

inferior results comparing to those presented here.

For the purpose of comparison an example of s hemispherical shell
%

[

under internal pressure is selected. A roller edge which does not restrain •

normal displacement and meridional rotation is specified. For this type

of lo_ding _nd support conditions the membrane theory, within the

": limitation of the Love's first spproxim_tlon, gives the exact solution

and no bending moment Should appear anywhere in the shell. Its closed

form s_lution is 8s follows

N=N =N8 = i
i s _- pR

M = M
s =Me =0

pR 2
• w = (l-v) 2E-"-h

u=O

! * _ee, page 89

l

J

'I
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This example serves particuarly to detect any bending moment which may be

generated in the shell as the result of geometrical idealization.

For the numerical computation, the following material properties and

dimensions are selected

v= 0.30

E = lOxlO 6 psi

h = 3 in. thickness of sphere

R = i00 in. radius of sphere

p = 1 psi internal pressure

which gives

._ N = 50 # /in

w = 1-1/6 x !0 in.

Figures 20 through 25 show a comparison among FDR(1), FDR(2), and

FDC(2) with 3 and 9 elements. The results clearly indicates that FDR(2)

is superior to FDR(1) and FDC(2), in prediction of both the displacements

and stresses. In this example the solution with 9 elements in a computer

'_ working with 8 deciminal digits; FDR(2) yields accurate results up to

6 digits, whereas the accuracy of FDC(2) and FDR(1) does not exceed d

and 4 significant digits, respectively. Hence, although in some figures

the plotted points for different elements coincide, the degree of accuracy

is not the same. A comparison of results for FDR(1) and FDR(2) shows a

relative improvement that can be achieved by matching curvatures at nodal

i circl_s.

f

I

b _
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To compare the results obtained with a curved element with those of a

conical element, the same example was worked out using the computer program

developed in Ref. [13]. The hemisphere was divided into 9 elements. A

spherical cap was used for the central element and the remaining elements

were conical. The results for displacement and meridianal bending moment

are shown in Fig. 26. It indicates that the overall displacements agree

closely with the exact solutions but there is a sudden jump at _ = 90 °

which deviates from the exact solution by 45%. The principal inaccuracy

appears to be in the prediction of bending moments. The largest bending

x moment, which occurs at _ = I0°, produces stresses st outer layers which

are greater than those of membrane forces. The h_gh concentration of

bending moments at nodal circles, which are the results of idealization in

geometry, is more undesirable in the plastic analysis than in the elastic

analysis. Because these bending moments may cause a premature enset of

plastic deformation which could lead to an overall, change in the

characteristic of the system.

f

i
I

J
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6.3 Comparison in the Elastic Range

The curved element developed here is compared with s theoretical

solution obtained elsewhere by another method and witl" the results of an

experiment in the elastic range. In these example3 the shell geometries

are relatively simple and can be managed by classical methods. The intent

of comparisons given here is merely to show the reliability of the proposed

approach but not its versatility. The results of these examples and those of

ms.y others, which were worked cut but not reported here for the sake of

brevity, show s rapid convergence of the solution. Since the curved element

is employed, any shell geometry can be closely approximated. In general,

i the solution can be achieved with fewer number of subdivisions compared
to _nat with conical elelnents. As an illustration of this, a case is cited

in connection with the toroidal shell exalnple.

6.3.1 Toroidal Shell

The shell consists of a torus which is loaded by internal rressure.

A refined proceddre, which combines both the direct integration and the

finlte-difference approach, was used in Reference [II] to achieve a solution

: of this problem. The results reported in [II] are compared with the results

_°"_ of the finite element solution developed here.

Because of symmetry only the upper half of the torus is snalyze_.
!

The internal boundary condition st the junction of the upper and the

lower half, which indicate that the meridional rotation and displacement

should vanish st this Junetlon, were imposed to achl.#ve _e solution.
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FDR(2) elements of several mesh sizes were employed. The comparison for

the normal displacement, w. and mefidional bending stress 'sb are shown in

Figures 27 and 28. The results by the finite element method are plotted

for the number of elements equal to 16 and 30. The input d_ta are ms fo]lows:

E = 10xl06 psi v = 0.30

h = 5 in. shell thickness

R = i00 in. torus rsdius
b

= 150 in. as shown in Fig. 27

p = I000 psi internal pressure
Ha

The sizes of elements se)ected re-- this analysis can be inferred from the

location of the points on these figures. As can be deducec from these

figures, the convergence of the solutfon is fast and "_remarkable accuracy

can be achieved by taking a relatively small numbez of elements. It may

be noted that the same problem was tackled in a graduate student research

report at Berkele;" using the coni&al element dev,-loped in [13], where s

less satisfJctory result is reported even with izO relements.

Other examples of toroidal shell with different relativ_ geometry

},

were also worked out. it was observed that for smaller _- ratios finer

subdivisions should be used to obtain a comparable a_curacy for bending

h

moments. This is due to the fact that with the decrease in the _ ratio

J.R. Chisholm, "Finite Element Solution of Toroidsl Shells of Revolution,"

Graduate Student Research Report No. 225, SESM Division, Univ. of Calif., i

Berkeley, Fsll 1965. i

[
!
|

_w
I
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the membrane stresses become dominent compared to those of bending.

Therefore, the order of accuracy of the digits expressing the bending

stresses diminish. To recover the significant digits, it is also possible

to keep the number of elements constant but to retain a larger number of

digits in the co...._utation. The increase in the required number of elements

to achieve the desired accurac_ however, was found not to be excessive.

The optimum element size can be easily reached by comparing the results

obtained by using different element sizes.
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6.2.2 Toriconical Shell

A special type of toriconical shell is selected. The shell consists

of a cylinder which is closed st one end by a 45 ° spherical segment and s

cone, Fig. 29. At the junctions of cylinder-to-sphere and sphere-to-cone

the slopes are continuous but the meridionsl curvatures are not.

Two specimens of toriconicql shell where tested under internal pressure

,
in the elastic range by Morgan and Bizon at the NASA Lewis Research Center,

Cleveland, Ohio. The results of an experiment on the smaller size specimen,

which was prepared with higher degree of precision in fabrication, are

% compared with the finite element solution.

The material properties and the dimensions of the specimen are as

follows:

E = 10xl06 psi _ = 0.30

h = 0.06 in. shell thickness

D = 12.00 in. outer diameter of cylinder

= 9.50 in.. cylinder length

L = 18.0 in. total length of she]l

= 45 ° half-angle of the coneo

p = 250 psi internal pressure

The theoretical results with the aid of FDR(2) element were obtained

using the above data. Two different mesh sizes were selected: one with

W.C. Morgan and P.T. Bizon, "Experimental Evsluatlon of Theoretical Elastic

Stress Distribution for Cylinder-To-Hemlsphere and Cone-to-Sphere Junctions

in Pressurized Shell Structures," NASA Technical Note, D-1565, February 1963.
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34 elements;

i0 elements in the conical segment

13 elements in the spherical segment

ii elements in the cylindrical segment

and the other with 46 elements;

15 elements in the conical segment

15 elements in the spherical segment

16 elements in the cylindrical segment

The results between the two solutions indicate close agreement, Figures 29

and 30 show the meridional and the circumferential stress distribution

predicted by theory and that obtained in the experiment. Figure 31 is also

plotted to show the distribution of the effective stress

-2 2 2

= 7s - TsT e + Te

as was defined in (4.24). The correlation between the theory and the

experiment is within the range of the test control.

It may be mentioned that the NASA paper also reports some

theoretical results which are obtained based on the classical solutions

for s sphere, a cone, and a cylinder combined together by using the method

of superpositlon.

_Ibid
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6.4 Elastic-Plastic Solutions
q

Two examples are reported below to demonstrate the application to

elastic-plastic problems. Von Mise yield condition and the associated

flow rule were used in these examples. The first example is chosen to

compare the result with that of a previous report where a different approach

was used. The other is concerned with a case study for torisFherical

pressure vessel.

6,4.1 Circular Plate

A simply suppurted circular plate of elastic-isotropic hardening

%
material is selected. The material properties and dimensions are the same

as those reported in Examples No. 6 of Ref. [34], where

a = i0 in. plate radius

h = 1 in. plate thickness

lOxlO 6E = psi

v= 0.33

= 16,000 psi elastic limit
Y

E t = 3xl06 tangent modulus

For the analysis using the finite element method, 20 elements and 20

layers were selected. After initiation of plastic deformation at the center

of plate, loading was increased with incrments of 10 psi.

Results of this example together w_th that obtained in [34] are

shown in Figures 32 to 34. For comparison, solution according to elastic

theory is also plotted in Figures 32 and 33. A redistribution of moment as

a result of plastic deformation is apparent in Figure _3. Except for s

slight change in elastic-plastic boundaries, a good correlation is obtained.
;"

._1

1967021775-137



122

0

I 0

°
, __

\ ',X \ _Io >

o _
5

N

1

o _
- NI _ I
I!

•" I I
I L

• I,L I 0
0 _ 0 _ 0

0 _ _ _
0 0 C_ 0 C_

1967021775-138



123

2.0

1.0

0
0 0.2 04 0.6 0.8 ID

r
rl

r
FIG.3:5 CIRCUMFERENTIAL BENDING MOMENT VERSUS -_-

(CIRCULAR PLATE)

i i i i

1967021775-139



i24

1967021775-140



125

6.4.1 Torispherical Sbell

A torispherical pressure vessel head subjected to uniform internal

pressure is analyzed here. 'I_e material is assumed to be elastic-perfectly

plastic. An example is worked out for a shell of uniform thickness with

the following dimensions:

D = i0 in. diameter of head skirt

L = D radius of sphere
\

r = 0.06 D meridional radius of torus

t = 0.004 D shell thickness

%

The material properties are taken as follows

E = 30xiO 6 psi

y = 0.30

_ = 30,000 psi
y

Three different element sizes, with 16, 32, and 47 elements; were
i

i tried for a shell under 25 psi internal pressure and the result for normal
displacement w is plotted in Fig. 35, where a good convergence is observed.

An example with 47 elements;

20 elements in the spherical segment

16 elements in the toroidal segment

Ii elements in the cylindrical segment

and 20 layers was analyzed for elastic-plastic solution. After the appli-

cation of the first increment of load of 42 psi, which is slightly less

m

1967021775-141



126

than the yield pressure; the loading was continued with different load

increments of 6, 3, and 1.5 psi. The results for normal displacement w

at the center of shell. _ = 0, versus internal pressure is shown in Figure

36 where the trend of convergence can be observed. By comparing these

three curves, it can be deduced that the rate of convergence increases as

the magnitude of load increment decreases. The results of solution with

1.5 psi load increment are plotted in Figures 37 to 42. Figures 37, 38,

and 39 show the normal displacemrnt w, meridional moment M , and circum-
s

ferential in plane force Ne, respectively, for loading of 60, 81 and 102

x psi. The elastic solution for 102 psi is also shown in these figures.

Figures 38 and 39 clearly indicate a redistribution of stresses as the

result of plastic deformation. In Figure 40 the boundaries of elastic-

plastic zones are shown at several stages of loading, whexe a plastic

region initiated at torus is propagated towards the spherical and

cylindrical segments. Finally, Figures 41 and 42 show the stress path

st several points along .,emeridian. It is interesting to note that

although the external load was applied proportionally, the stress path :_

does not remain radlal. As the result, the deformation theory of (

plasticity is not quite suitable for this class of problem, i

It may be of interest to compare the results obtained here with !

the limit load predicted in Ref. [62] and another paper by Shield and

t

Drucker. For the dimensions of shell selected here wlth _ = 0.004 these

R.T. Shield and D.C. Drucker, "Limit Strength of Thin Wslled Pressure

Vessels With an ASME Standard Torlspherlcsl Head," Proc. of 3rd U.S.

Nat. Congr. Appl. Mech;, pp. 665-672, 1958.

i
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authors predict an ultimate pressure of

u
pUD - 0.364, p = 87 psi

2oyt

This pressure is shown in Figure 36, which is lower than what might be

considered as limit pressure using the procedure presented here. This

might be attributed to the various approximations which were introduced

in the above references namely; elimination of Me from the yield criterion,

neglecting Me and M in the equilibrium equations, and estimati:.o the

ultimate pressure from its bounds. In addition, the three hinge mechanism,

x which was assumed to achieve an upper bound, was not realized here.

The design pressure according to the ASME Unfired Pressure Vessels

.
Code for a torispherical shell is equal to

D 2SEt
p - LM+0.2t

where,

D
p - design pressure, psi

S - maximum allowable working stress, psi

E - lowest efficiency of any joint in the head

L - inside spherical radius, inches

=i (3+ )
r

r - inside toroidal knuckle radius, inches

ASHE Boiler and Pressure Vessel Code, "Section VIII, Unfired Pressure
el

Vessels, 1965.

i
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t - minimum required thiclmess of head after forming, inches

(exclusive of corrosion allowance)

end the inside diameter of the head skirt D is taken to be

equal to L. Defining the load factor n

c_

n=--_-
SE

the above formula can be recast as

2G t
u y

p - LM+O. 2t

where

u D
p =np

For the example given here it tumns out that

u
p = 135.5 psi

which is higher than what might be considered as limit pressure in Fig. 36.

Note that the effect of workhardening was not considered in this example.
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FIG. 38 MERIDIONAL BENDING MOMENT M $ IN TORISPHERICAL SHEll
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7. CONCLUSIONS

A numerical method has been presented for the analysis of elastic-

plastic shells of revolution under axisymmetrie loading and support conditions.

The shell is assumed to be torsion-free, and Kirchhoff hypotheses togetheI

with Love's first approximation and small deflection theory _re adopted.

The method is quite general and is applicable to any shell geometry, loading,

support conditions, and material properties; subject to the condition of

axial symmetry. The approach is suitable for a routine computation on a

digital computer.

The finite element method using the displacement mod_l is selected to

analyze the system. For a close idealization of the shell geometry, a

curved frustum is taken as the primary element. Because the shell is axially

symmetric, only the meridian is to be defined. In a search for geometric

representation of a curved element, two schemes are considered. One is to

express this curve in terms of its intrinsic equations. This is found to be

numerically laborious and requires some approximations. The approximations

are not suitable for the entire range of latitude angle. The other is to

represent the curve in som¢ local coordinates. Employing the latter approach,

an element was developed which can take specified slopes and curvatures at i

its nodal circles and is well-conditioned for any shell geometry. It appears ]

]possible to generalize these two schemes to express the geometry of a curved

i

element for a shell of arbitrary shape, i

iRepresentation of displacement patterns of a curved element is another

important problem. The displacement patterns can be alternatively expressed I

iin either surfsce (curvllanear) or local (rectilinear) coordinates. Comparison

f
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of the two approaches was made with the aid of numerical examples. The latter

was found to be superior in accommodating for rigid body translation and

constant straining modes.

In general, idealization of the meridional curve with the aid of curved

elements i7 found to greatly improve the results. The accuracy of the solution

is considerably increased. At the same time, a smaller number of elements can

be used in co:iparison to that of a conical element. Moreover, the extra effort

for deriving the element stiffness matrix for a curved element aud the extra

computer ti_e for execution is very small. It should be noted that for a very

thln shell where the membrane forces 5ecome predominant and the bending effects

are localized, a very fine mesh should be used near the boundary layer region

even with a curved element. An improvement of the solution can be achieved

by allowing more degrees of freedom in the displacement patterns. The solution

can proceed either by a condensation technique or by including extra degrees

of freedom, such as change of curvature, at nodal circles. This requires

further investigations.

An incremental technique using the tangent stiffness method was utilized

for the elastic-plastic solution. Flow theory of plasticity was, employed

which allows the trace of auy loading history. Although any material properties

can be specified, the examples are given for elastic-perfectly plastic and

elastic-isotroplc hardening materials using Mises yield condition and its

associated flow rule.

Finally, a computer program was developed which can treat any rotationa!

shells with arbitrary geometry and support conditions. The shell thickness may

very along the meridian and any distributed and/or concentrated ring lo ds can

be specified. With the aid of numerical examples, the convergence and the

accuracy of the method is found to be entirely satisfactory.
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APPENDIX A

[B] Matrices For a Frustum Element (See pp. 89)

4xl 4x6 6xl

(I) FDC Element

r 1 -_ r 1 r 1 r 1

o c°s(_-_i) cos_ _ _ _ _ _2 _ _3r r r r r

_" 0 d---(1---)c°s_idsr I d_s(r_ ) 0 2_2 _ 6__2

cos%0 eos_O i _cos_O eos_ 2_ cgs_0 3_ 2 cos_OO .....

rr 1 rr 1 £r _r £r

(2) FDR Element

0 p 0 _'p 2_'p 3_2_'p

r r r r r r

0 (1-_'2)¢ 0 2_'# 4_T_'_-_ 3_(2_'¢-_t)

where

p = 1 _ = 2 _# ,in,_.'co,._+_#
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[BJ M_trices For a Cap Element (see pp. 89 )

4xl

(1) _ 4x6 6Xl

_'o o !
'g 0

1"

0 1 ;

o o _ slnco g25b -1" ._...

x ( ) 0 _ sin¢_ .

1 2

o o _ ._"7 -_ _
rr 1 0

COB

whe_pe

g , _Ot:e r(O) = 0

o o 4

o o _o_ 2g_'o

3g'2T}'O 7
re°s_ 1 _0 0 z.

0

o o o _'-_nB_ 4g,_'_._ a_'(2_:,_,___)
Wheze _ _

P=-- 1

(I+I_ ) /2 ¢ =
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APPENDIX C

[¢(g)] Matrices For a Frustum Element (see pp. 89)

(5.47) {v(_) } = [¢(_) ] {if} I
3xl 3x6 6xl

(1) FDC Element i
+

_uI __ _o_ _ o o o _]

tJ Jc°s_°i g 1 2_ 3g_ %
x _o rl r 1 _, 2-- -2" %

' /%

(2) FDR Element

o o o i<u2 - o o 1 _ _2 3 % ? :

J "i _' 1 2g 392 _5 ,

, _ _,(I+TI'2) L(l+'rl'z) ._(l+'a'2) _,(I+TI'2) % J

_m mmmm
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APPENDIX C (Con' t)

[¢(_)] Matrices for a Cap Element (see pp. 89 )

(5.47) [v(_) } = [¢(_)] {C_]
3xl 3x6 6xl

(i) FDC Element

- ('+i_

u} 0 o o o i
w : cos_ o o o g2 g3 %

x 0 0 _i_ 0 2A 3_--_2 "+4i
- rl '+ P+.-'+51

" %J

(2) FDR Element

uI "0 0 - cos _ _ 0 0

= 0 0 sin_ _tan 8i _2 _3 a2

tsn_i-_' 2_ 3_ 2 / _40 0 0

- (l+ Ti,2) (l+ 11,2) (l+ 11,2) [ _5- %

Note thst the order of [_} has been chsnged for compsctness from Frustum to

Cap element. This Is consistent with [A] mstrlx.
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APPENDIX D

Displacement Trsnsformstion Matrices [A] for a Frustum

Element (See pp. 91 )

(5._3) {q]= [A][_} [q?= _ CA?= -_-
6x! 6z6 6xl 6x6 _ -J

(i) FDC Element

- Isln_i cos_i 0 0 0 0

cos_i sinai 0 0 0 0

cos_ix I i

0 rl(O ) 0 _ 0 0

- sinai cos_i 1 0 0 0

CoS_j sinai 0 1 1 1

c°s_i 1 .t 2 3
0 --

- rl(l) rl(z) _ 1 __

(2) FDR Element

D

1 0 0 0 0 0

0 0 1 0 0 0

sin _icos _i c°s2 _i 2_cos 2 81 3g2cos2 _i _:
0 - 0 i z z ,

___

I I 0 0 0 0

0 0 1 1 1 1

. _ _ L
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APPENDIX D (Con' t)

[A] = [A -1] Matrices For a Frustum Element (see pp. 91 )

(1) FDC Element

- sinai cos_i 0 0 0 0

COS_i sinai 0 0 0 0

s32 0 1 0 0831

LCOS2_ i _sin_icos_ i
L 0 0 0

rl(O) rl(O)

a51 s52 - 2_ rl(l ) 3 -

_61 _62 _ rl(1 ) - 2 _ _

where

w

s31 = -i - (sin_j - sing}i) sin_Oi

§32 = (sin_Oj - sinai) cosq_i

• _s in_j _cos2_i

§51 = [3cos_Oj- 3cos_i + rl-_ ]sinai - 2 r_(O)

Lsin_j _cos _0i

S61 =- [2cos_j- 2cos_i + rl(1) ] sinai + r](O)

Lsin_j _s in_i cosCPi

_s inq_ _s in_i cos_i

_,2"2+[_oo,_j-_.oo_ ]co,_+ _(0_
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APPENDIX D (Con' t)

[A] _ [A-1] Matrices For a Frustum Element (See pp. 91 )

(2) FDR Element

p

1 0 0 0 0 0

-i 0 0 1 0 0

0 1 0 0 0 0

, -tan 8i 0 _(i+ tan 2 8i) tan 8i 0 0

,\ 2tsn 8i+tsn 8j -3 -2_(1+ tan2 8i) -2tan Bi-tan 8j 3 -L(I+ tan2 8j)

.; -tan 8i-tan Bj 2 _(I+ tan2 8i ) tzn_i +tan 8j -2 #(I+ tan2 8j)

[A] = [A-I] Matrices For a Cap Element (See pp. 91 )

(i) FDC Element

0 i 0 0 0 0
?

o o o o o o

, 0 sin_j 0 I 0 0

0 0 0 0 0 0

_In_j L

0 r I (i) -3cosq)j 0 r I (i) 3 -_

/ain_j

,. _0 _ +2cos_j o _ -2 %

! Note - The value g12 = 1 only contributes to rigid body translstton.
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Appendix D (Con't)

[A] = [A-!] Mstrices For a Cap Element (see pp. 91 )

(2) FDR Element

0 0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 0 0 0

0 0 cos _ 1 0 0

cos_i cos%Oj ten2%0j)
[ _0 0 -2 -2tan _i+tanBj 3 -_(i+i cos 8i cos 8j

L
i COS_Oj 8i+tsn 8j -2 _(i+ tsn2_j)

cos_ i
0 0 -- + tan

cos8i cos8j _,.

Note - For a Cap Element

[_]= [A-1][q]

{q}T = < 0 V(O) 0 Ul(1) u2(1) X(1) >
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APPENDIX E

Transformations To Global Coordinates (r-Z)

(5.54) {q] = IT]Jr}
6xl 6x6 6xl

(I) FDC Element

Equation (5.54) may be expressed a_

l_Vv:_ioiI 0

I Tj _ _qx 0 I j

where

T

[vi] --<u w x >i

T

[rl] =<u u x>.r z l

Z

cos_O s in_ 0

[T(_) ] = sinq) -cosq) 0

0 0 1
m

IT1] = It(o) ] [Tj] = IT(l) ]
3x3 3x3 3x3 3x3

i
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APPENDIX E (Con' t)

(2) FDR Element P

Similar to the previous csse

IT{v (uI u2 X >i,j"i,j

COS_ sin_ 0

3x3[T]= [Ti] = [TJ]=3x3 3x3 Lsi: _ -c°s'00 1_, -

Z
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" APPENDIX F

Trensformstion to Surfsce Coordinates (u,w)

-W

(_.s4,{q}: IT] {r} i
6xl 6x6 6xl

or t

Fi
= 1-- J

I o l TjL ' j

T i

£r}i,j --<u w ×>i,j%

(i) FDC Element

T

{v}: <u , x>

[Ti] = [Tj] = [I]
3x3 3x3 3x3

where LI] is the identity matrix

(2) FDR Element

T 0
{v} = <ui u2 x > _, _ r

cos S -sin S 0

[T(_) ] = sins cosS 0 ._//
0 0 i -_ _ U

ITi]: IT(O)] , [Tj]: IT(1)]
X

L
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